AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion. – GreenMedInfo Summary

 Uncategorized  Comments Off on 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion. – GreenMedInfo Summary
Aug 042013
 

File:Shogaol.png

6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation.

Abstract Source:

Br J Pharmacol. 2010 Dec ;161(8):1763-77. PMID: 20718733

Abstract Author(s):

H Ling, H Yang, S-H Tan, W-K Chui, E-H Chew

Article Affiliation:

Department of Pharmacy, National University of Singapore, Singapore, Singapore.

Abstract:

BACKGROUND AND PURPOSE: Shogaols are reported to possess anti-inflammatory and anticancer activities. However, the antimetastatic potential of shogaols remains unexplored. This study was performed to assess the effects of shogaols against breast cancer cell invasion and to investigate the underlying mechanisms.

http://www.greenmedinfo.com/article/6-shogaol-active-constituent-ginger-inhibits-breast-cancer-cell-invasion

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010581/

Shogaol, also known as (6)-shogaol, is a pungent constituent of ginger similar in chemical structure to gingerol. Likezingerone, it is produced when ginger is dried or cooked.

Shogaols are artifacts formed during storage or through excess heat, probably created by a dehydration reaction of the gingerols. The ratio of shogaols to gingerols sometimes is taken as an indication of product quality.

The name ‘shogaol’ is derived from the Japanese name for ginger (生姜、shōga).

Shogaol is rated 160,000 SHU on Scoville scale. When compared to other pungent compounds, shogaol is moderately more pungent than piperine, but less than capsaicin.

  1. McGee, Harold (2004). On Food and Cooking: The Science and Lore of the Kitchen (2nd ed.). New York: Scribner pp. 425-426.
  2. NSF International Determination of Gingerols and Shogaols in Zingiber officinale rhizome and powdered extract by High-Performance Liquid Chromatography.
  3. Ula (1996), op. cit. “The HPLC measures the capsaicinoid(s) in ppm, which can then be converted to Scoville units using a conversion factor of 15, 20 or 30 depending on the capsaicinoid.” This would make capsaicin 15,000,000 SHU

 

more info

6-Shogaol

A bioactive ingredient of ginger root (Zingiber officinale), a medicinal plant having anti-nausea, anti-inflammatory, and anti-carcinogenic properties and a carminative effect

 

  • Catalog No: APH-02034
  • CAS Number: 555-66-8
  • Chemical Formula: C17H24O3
  • Molecular Weight: 276.37
  • Purity: > 95% determined by HPLC
  • Appearance: Viscous yellow liquid
  • Solubility: Soluble in methanol and ethanol
  • Stability: Unstable at room temperature in the presence of oxygen and light. Stable over extended period at -20°C.
  • Storage: -20°C
  • Shipping: On ice (5°C)
  • Handling: Avoid exposure to oxygen and direct sunlight

6-Gingerol Ginger-Rhizomes6-Shogaol is isolated from the dried or cooked rhizomes or roots of the plant Zingiber officinale (ginger). It is a perennial reed-like plant with annual leafy stems, about a meter (3 to 4 feet) tall. 6-Shogaol is a dehydrated 6-gingerol molecule that has lost a molecule of water during the drying or cooking process.

Ginger produces clusters of white and pink flower buds that bloom into yellow flowers. Because of its aesthetic appeal and the adaptation of the plant to warm climates, ginger is often used as landscaping around subtropical homes. Traditionally, the root is gathered when the stalk withers; it is immediately dried, scalded, or washed and scraped, to kill it and prevent sprouting.

6-Shogaol is isolated from dried or cooked ginger root using ethanol and other organic solvents followed by chromatographic purification. Aphios isolates 6-shogaol utilizing near-critical and supercritical fluids using CXF and CXP enabling technology platforms as alternatives to ethanol and conventional organic solvents techniques.

Biological Activity:

Ginger (Zingiber officinale RoscoeZingiberaceae) is a medicinal plant that has been widely used in Chinese, Ayurvedic and other global herbal medicinal practices since ancient times for a wide array of ailments including arthritis, rheumatism, sprains, muscular aches, pains, sore throats, cramps, constipation, indigestion, vomiting, hypertension, dementia, fever, infectious diseases and helminthiasis (Ali et al., 2008).

Ginger has been approved for use by Germany’s Commission E, the agency responsible for regulating the use of herbal products in that country (Blumenthal, 1998). Ginger has recently been studied scientifically for its effect on nausea and vomiting associated with motion sickness, surgery, pregnancy and cancer chemotherapy.

There may be several mechanisms of action in play relative to the antiemetic properties of ginger. It has been reported that the antiemetic qualities may be derived from ginger’s anti-serotonin 3 effects on the gastrointestinal and central nervous system (Chaiyakunapruk et al., 2006). In a study of guinea pig ileum, it was found that certain ingredients of ginger (6-, 8- and 10-gingerols) inhibit the anti-serotonin 3 receptor function (Huang et al., 1991 and Yamahara et al., 1989). In addition, these active ingredients have been shown to affect gastric motility and potentially have an antispasmodic effect on the gastrointestinal system (Hashimoto et al., 2002 and Suekawa et al., 1984).

Pan et al. (2008) investigated the inhibitory effects of 6-shogaol and a related compound, 6-gingerol, on the induction of nitric oxide synthase (NOS) and cyclooxygenase-2 (COX-2) in murine RAW 264.7 cells activated with LPS. Their results show that 6-shogaol downregulates inflammatory iNOS and COX-2 gene expression in macrophages by inhibiting the activation of NF-κB by interfering with the activation PI3K/Akt/I κB kinases IKK and MAPK.

References:

Ali B, Blunden G, Tanira M and Nemmar A. (2008). Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food and Chemical Toxicology. 46(2): 409-420.

Blumenthal M, Busse W, Goldberg A, Gruenwald J, Hall T, Klein S, Riggins C and Rister R. (1998). The Complete German Commission E monographs. Therapeutic Guide to Herbal Medicines, Austin TX, American Botanical Council.

Chaiyakunapruk N, Kitikannakorn N, Nathisuwan S, Leeprakobboon K and Leelasettagool C. (2006). The efficacy of ginger for the prevention of postoperative nausea and vomiting: a meta-analysis. Am. J. Obstet. Gynecol. 194, 95–99.

Chen C, Kuo M, Wu C and Ho C. (1986). Pungent Compounds of Ginger (Zingiber officinale Roscoe) Extracted by Liquid Carbon Dioxide. Journal of Agriculture and Food Chemistry 34(3): 477-480.

Hashimoto K, Satoh K, Murata P, Makino B, Sakakibara I, Kase Y, Ishige A, Higuchi M and Sasaki H. (2002). Component of Zingiber officinale that improves the enhancement of small intestinal transport. Planta Medica. 68:936-9.

Huang Q, Iwamoto M, Aoki S, Tanaka N, Tajima K, Yamahara J, Takaishi Y, Yoshida M, Tomimatsu T and Tamai Y. (1991). Anti-5-hydroxytryptamine 3 effect of galanolactone, diterpenoid isolated from ginger. Chem. Pharm. Bull. (Tokyo) 39, 397–399.

Pan M, Hsieh M, Hsu P, Ho S, Lai C, Wu H, Sang S and Ho C. (2008). 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. Mol Nutr Food Res. 52(12):1467-77.

Suekawa M, Ishige A, Yuasa K, Sudo K, Aburada M and Hosoya E. (1984). Pharmacological studies on ginger: I. Pharmacological action of pungent constituents, (6)-gingerol and (6)-shogaol. J Pharmacobiodyn. 7:836-48.

Yamahara J, Rong H, Iwamoto M, Kobayashi G, Matsuda H and Fujimura H. (1989). Active components of ginger exhibiting anti-serotonergic action. Phytother. Res. 3, 70–71.

Share

ALL ABOUT ANTIDIABETIC PLANT: COCCINIA INDICA

 Uncategorized  Comments Off on ALL ABOUT ANTIDIABETIC PLANT: COCCINIA INDICA
Aug 032013
 

Introduction
Plants had been used for medicinal purposes long before recorded history. Ancient Chinese and Egyptian papyrus writings describe medicinal uses for plants as early as 3,000 BC. Indigenous cultures (such as African and Native American) used herbs in their healing rituals, while others developed traditional medical systems (such as Ayurveda and Traditional Chinese Medicine) in which herbal therapies were used;…………………………..

read all at

http://www.pharmatutor.org/articles/all-about-antidiabetic-plant-coccinia-indica

Share
Aug 012013
 
The prevalence of diabetes is growing globally, and with that the size of the diabetes drug market. There are more than 370 million people in the world with diabetes, about 90% of those with Type 2 diabetes. More children are developing the disease and more people are dying from diabetes, and so more and more people need treatment. Standard & Poor’s has estimated the annual market will hit $58 billion by 2018, from about $35 billion today.Read more:

http://www.fiercepharma.com/special-reports/10-top-selling-diabetes-drugs-2012?page=0,0&utm_medium=nl&utm_source=internal

 

 

check these videos

 

…………

……….

Share

FDA Lifts Clinical Hold on Canada company Cangene’s Hemophilia Compound

 companies  Comments Off on FDA Lifts Clinical Hold on Canada company Cangene’s Hemophilia Compound
Jul 312013
 

 

 

FDA lifts clinical hold on Cangene’s hemophilia compound IB1001

WINNIPEG, July 29, 2013 /CNW/ – Cangene Corporation (Cangene) today announces that the U.S. Food and Drug Administration (FDA) has lifted the clinical hold previously placed on clinical trials evaluating the safety and efficacy of IB1001, a recombinant Factor IX (rFIX) product being developed for the treatment and prevention of bleeding episodes with hemophilia B.

http://www.pharmalive.com/fda-lifts-clinical-hold-on-cangenes-hemophilia-compoun

IB1001 is an intravenous recombinant Factor IX (rFIX) being developed for the treatment and prevention of bleeding episodes in people with hemophilia B. The IB1001 development program includes a comprehensive set of pharmacokinetic, safety, and efficacy data from a Phase 3 clinical trial in people affected by hemophilia B, including a surgery sub-study.

A biologics license application (BLA) was submitted to the U.S. Food and Drug Administration (FDA) in March 2012 and a Marketing Authorization Application (MAA) was submitted to the European Medicines Agency (EMA) in October 2011.

In July 2012, IB1001 was put on a clinical hold by the FDA due to a higher than expected rate of host cell antibody development in people treated with IB1001.

Cangene Corporation (TSX: CNJ) has completed its previously announced acquisition of the worldwide rights to investigational hemophilia compound IB1001 (recombinant FIX), as well as Inspiration’s rights to two product candidates in pre-clinical development: IB1007 (recombinant FVIIa) and IB1008 (recombinant FVIII) from Ipsen (Euronext: IPN; ADR: IPSEY) and Inspiration Biopharmaceuticals, Inc., in connection with Inspiration’s bankruptcy proceedings.

 

The transaction was slated to close on February 15, 2013.

Pursuant to the terms of the agreement, Cangene will pay approximately US $5.9 million upfront and up to $50 million in potential additional commercial milestones as well net sales payments equivalent to tiered double-digit percentage of IB1001 annual net sales.

http://canadianprivateequity.com/cangene-closes-56-million-acquisition-of-inspirations-ib1001-hemophilia-b-product/2013/02/20/

 

  • amcrasto@gmail.com

    feder-0005.gif from 123gifs.eu
Share

Perrigo Buying Elan For $8.6B

 companies  Comments Off on Perrigo Buying Elan For $8.6B
Jul 302013
 

U.S. drugmaker Perrigo agreed to buy Ireland’s Elan for $8.6 billion in a deal that should allow the rapidly growing company to reduce its tax bill and boost its royalty stream.

Perrigo Co. said it would pay Elan Corp.’s investors $6.25 per share in cash and $10.25 in Perrigo stock, an 11% premium over Elan’s closing price on July 26. Elan shares in Dublin surged 13% higher to 12.58 euros ($16.71), above Perrigo’s offer price, following news of the takeover.

http://www.dddmag.com/news/2013/07/perrigo-buying-elan-86b

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: