AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

Design, synthesis and biological evaluation of novel 5-hydroxy-2-methyl-4H-pyran-4-one derivatives as antiglioma agents

 drugs, spectroscopy, SYNTHESIS  Comments Off on Design, synthesis and biological evaluation of novel 5-hydroxy-2-methyl-4H-pyran-4-one derivatives as antiglioma agents
Feb 082018
 

Med. Chem. Commun., 2018, Advance Article
DOI: 10.1039/C7MD00551B, Research Article
Yi-Bin Li, Wen Hou, Hui Lin, Ping-Hua Sun, Jing Lin, Wei-Min Chen
Two series of 5-hydroxy-2-methyl-4H-pyran-4-one derivatives were synthesized and their antiglioma activities were evaluated.

Design, synthesis and biological evaluation of novel 5-hydroxy-2-methyl-4H-pyran-4-one derivatives as antiglioma agents

Author affiliations

Abstract

D-2-Hydroxyglutarate (D-2HG) is frequently found in human brain cancers. Approximately 50–80% of grade II glioma patients have a high level of D-2HG production, which can lead to cancer initiation. In this study, a series of novel 5-hydroxy-2-methyl-4H-pyran-4-one derivatives were designed and synthesized as antiglioma agents, and their related structure–activity relationships are discussed. Among these novel compounds, 4a exhibited promising anti-proliferative activity against glioma HT1080 cells and U87 cells with an IC50 of 1.43 μM and 4.6 μM, respectively. Further studies found that the most active compound (4a) shows an 86.3% inhibitory rate against the intracellular production of D-2HG at 1 μM, and dramatic inhibitory effects, even at 1 μM on the colony formation and migration of U87 and HT1080 cells.

STR1 STR2 str3 str4
6,6′-((4-(Benzyloxy)phenyl)methylene)bis(5-hydroxy-2-methyl-4H-pyran-4- one) (4a) The reaction was performed according to the general procedure C, using 1 (1.00 g, 7.90 mmol) and 4-(benzyloxy)benzaldehyde (0.84 g, 3.95 mmol).2 The crude product was recrystallized from isopropanol affording a white powder 4a (1.53 g, 87%): mp 261.4-262.1oC; 1HNMR (300 MHz, DMSO-d6)  2.22 (s, 6H, CH3), 5.08 (s, 3H, OCH2- Ph), 5.96 (s, 1H, CH-Ar), 6.25 (s, 2H, C=CH), , 7.01 (d, J = 9.0 Hz, 2H, Ar-H3’/H5’), 7.22 (d, J = 9.0 Hz, 2H, Ar-H2’/H6’), 7.31-7.45 (m, 5H, Ph-H); 13CNMR (75 MHz, DMSO-d6)  173.95, 165.08, 158.12, 151.20, 147.68, 142.19, 140.77, 137.42, 129.87, 128.91, 128.16, 127.69, 115.46, 114.97, 111.74, 69.69, 19.63; ESI-MS m/z: 447.1 [M+H]+ ; ESI-HRMS m/z: 447.1438 [M+H]+ , calcd for C26H23O7 447.1438.
Share

Iloprost (ciloprost) used to treat a serious heart and lung disorder called pulmonary arterial hypertension

 orphan status  Comments Off on Iloprost (ciloprost) used to treat a serious heart and lung disorder called pulmonary arterial hypertension
Jan 132014
 

http://chem.sis.nlm.nih.gov/chemidplus/RenderImage?maxscale=30&width=300&height=300&superlistid=0078919138

Iloprost (ciloprost)

MF C22H32O4
Formula Wgt 360.5

6,9ALPHA-METHYLENE-11ALPHA,15S-DIHYDROXY-16-METHYL-PROSTA-5E,13E-DIEN-18-YN-1-OIC ACID

6,​9α-​methylene-​11α,​15S-​dihydroxy-​16-​methyl-​prosta-​5E,​13E-​dien-​18-​yn-​1-​oic acid

 

Iloprost Molecule

ILOPROST (Ventavis®) is used to treat a serious heart and lung disorder called pulmonary arterial hypertension. While iloprost inhalation solution will not cure this disorder, it is designed to improve symptoms and the quality of life. Generic iloprost inhalation solution is not yet available.

Iloprost is a second generation structural analog of prostacyclin (PGI) with about ten-fold greater potency than the first generation stable analogs, typified by carbaprostacyclin.1 Iloprost binds with equal affinity to the human recombinant IP and EP1 receptors with a Ki of 11 nM.2Iloprost constricts the isolated guinea pig ilium and fundus circular smooth muscle (an EP1 receptor preparation) as strongly as prostaglandin E2 (PGE2) itself.3 Iloprost inhibits the ADP, thrombin, and collagen-induced aggregation of human platelets with an ED50 of about 13 nM.1 In whole animals, iloprost acts as a vasodilator, hypotensive, antidiuretic, and prolongs bleeding time.4 It has been evaluated in several human clinical studies as a treatment for idiopathic pulmonary hypertension.5,6 In these studies, an aerosolized dose of 30 µg/day was effective, and doses as high as 150 µg/day for up to a year were well tolerated.

73873-87-7 CAS NO

78919-13-8 PHENACYL ESTER

Launched – 1992 bayer

Ilomedin®, Ventavis™

Iloprost.pngiloprost

An eicosanoid, derived from the cyclooxygenase pathway of arachidonic acid metabolism. It is a stable and synthetic analog of EPOPROSTENOL, but with a longer half-life than the parent compound. Its actions are similar to prostacyclin. Iloprost produces vasodilation and inhibits platelet aggregation.

BAY-q-6256 E-1030 SH-401 ZK-36374

  • BAY Q6256
  • Ciloprost
  • Iloprost
  • Iloprostum
  • Iloprostum [Latin]
  • UNII-AHG2128QW6
  • UNII-JED5K35YGL
  • Ventavis
  • ZK 00036374
  • ZK 36374

Endoprost Ilomedin Ilomédine Ventavis Iloprost is a synthetic prostacyclin analog discovered and developed by Schering AG and Berlex which has been available for more than ten years as therapy for peripheral arterial occlusive disease (PAOD), including Raynaud’s phenomenon and Buerger’s disease.

Iloprost improves blood flow, relieves the pain associated with circulatory disturbances and improves the healing of ulcers, which can develop as a result of poor arterial blood flow. Iloprost also produces vasodilatation of the pulmonary arterial bed, with subsequent significant improvement in pulmonary artery pressure, pulmonary vascular resistance and cardiac output, as well as mixed venous oxygen saturation. In 2003, Schering AG received approval in the E.U. for an inhaled formulation of iloprost (Ventavis[R]) for the treatment of primary pulmonary hypertension and the following year, the product was launched in Germany and the U.K.

Introduction on the U.S. market took place in March 2005 by CoTherix for the same indication in patients with NYHA Class III or IV symptoms. Iloprost is also available for the treatment of pulmonary hypertension and peripheral vascular disease. CoTherix had been developing a dry powder for potential use in the treatment of pulmonary hypertension; however, no recent development has been reported for this research. In Japan, phase III clinical trials are ongoing for the treatment of pulmonary arterial hypertension. In 2003, CoTherix licensed exclusive rights from Schering AG to market iloprost in the U.S. for primary pulmonary hypertension while Schering AG retained rights to the product outside the U.S. In April 2005, CoTherix established a collaborative research and development agreement with Quadrant to develop an extended-release formulation of iloprost inhalation solution. Iloprost was designated as an orphan medicinal product for the treatment of pulmonary hypertension in December 2000 by the EMEA and will fall under orphan drug protection until 2013.

The FDA has assigned to iloprost several orphan drug designations. In 1989, iloprost solution for infusion was granted orphan drug designation for the treatment of Raynaud’s phenomenon secondary to systemic sclerosis followed by another orphan drug designation in 1990 for iloprost solution for injection for the treatment of heparin-associated thrombocytopenia. In 2004, an additional orphan drug designation for iloprost inhalation solution for the treatment of pulmonary arterial hypertension was assigned.

The status has also been assigned in the E.U. for this indication. In 2012, orphan drug designation was assigned in the U.S. for the treatment of purpura fulminans in combination with eptifibatide and for the treatment of pulmonary arterial hypertension. In 2007, Cotherix was acquired by Actelion.

ILOPROST

 

 

iloprost phenacyl ester

Ventavis (TN), Iloprost phenacyl ester, Iloprost-PE, Iloprost (INN), CHEMBL138694, CHEMBL236025, AC1O6009, DAP000273, CID5311181

Molecular Formula: C30H38O5   Molecular Weight: 478.61972

2-oxo-2-phenylethyl 5-[(2Z)-5-hydroxy-4-[(1E)-3-hydroxy-4-methyloct-1-en-6-yn-1-yl]-octahydropentalen-2-ylidene]pentanoate

IMPORTANT PUBLICATIONS

Ciloprost Drugs Fut 1981, 6(11): 676

A carbohydrate approach for the formal total synthesis of the prostacyclin analogue (16S)-iloprost Tetrahedron Asymmetry 2012, 23(5): 388

Angewandte Chemie, 1981 ,  vol. 93,   12  pg. 1080 – 1081

Tetrahedron Letters, 1992 ,  vol. 33,   52  pg. 8055 – 8056

Helvetica Chimica Acta, 1986 ,  vol. 69,  7  pg. 1718 – 1727

Journal of Medicinal Chemistry, 1986 ,  vol. 29,  3  pg. 313 – 315

US5286494 A1

US 4474802

 US 2013253049

uS 2013184295

WO 1992014438

WO 1993007876

WO 1993015739

WO 1994008584

WO 2013040068

WO 2012174407

WO 2011047048

EP0011591A1 * Oct 18, 1979 May 28, 1980 Schering Aktiengesellschaft Prostane derivatives, their production and pharmaceutical compositions containing them
EP0084856A1 * Jan 19, 1983 Aug 3, 1983 Toray Industries, Inc. 5,6,7-Trinor-4, 8-inter-m-phenylene prostaglandin I2 derivatives
EP0099538A1 * Jul 11, 1983 Feb 1, 1984 Schering Aktiengesellschaft Carbacyclines, process for their preparation and their use as medicines

……………………………………

  •  5,6,7-trinor-4,8-inter-m-phenylene prostaglandin 12derivatives.
  • Prostaglandin I2, hereinafter referred to as PGI2, of

    Figure imgb0001

    was first found by J.R. Vane et.al. in 1976 and is biosynthe- sized from arachidonic acid via endoperoxide(PGH2 or PGG2) in the vascular wall. PGI2 is well known to show potent activity to inhibit platelet aggregation and to dilate peripheral blood vessels(C & EN, Dec. 20, 1976, page 17 and S. Moncade et al., Nature, 263,633(1976)).

  • [0003]
    Because of the unstable exo-enolether structure thereof, PGI2 is extremely unstable even in a neutral aqueous solution and is readily converted to 6-oxo-PGF which is almost physiologically inactive. Such instability of PGI2 is a big obstacle to its use as a drug. Furthermore, PGI2 is unstable in vivo as well and shows only short duration of action.
  • The compounds of the present invention are novel PGI2 derivatives in which the exo-enolether moiety characteristic of PGI2 is transformed into “inter-m-phenylene” moiety. In this sense the compounds may be regarded as analogs of PGI2.
  • The compounds of the present invention feature much improved stability in vitro as well as in vivo in comparison with PGI2. The compounds are highly stable even in an aqueous solution and show long duration of action in vivo. Further, the compounds have advantages over PGI2 for pharmaceutical application because they exhibit more selective physiological actions than PGI2, which has multifarious, inseperable biological activities.
  • Some prostaglandin I2 derivatives which have 5,6,7-tri- nor-4,8-inter-m-phenylene structure have already been described in publication by some of the present authors. (Kiyotaka Ohno, Hisao Nishiyama and Shintaro Nishio, U.S.P. 4,301,164 (1981)). But, the compounds of the present invention, which feature the presence of alkynyl side chain, have more potent physiological activities as well as decreased side effects than the already disclosed compounds analogous to those of the present invention.
  • It is an object of this invention to provide novel prostaglandin I2derivatives which are stable and possess platelet aggregation-inhibiting, hypotensive, anti-ulcer and other activities.

 

  • Figure imgb0004

    is named as 16-methyl-18,19-tetradehydro-5,6,7-trinor-4,8-inter-m-phenylene PGI2.

  • Alternatively, the compound of the formula (II) may be named as a derivative of butyric acid by the more formal nomenclature. In such a case, the condensed ring moiety is named after the basical structure of 1H-cyclopenta[b]benzofuran of the following formula:

    Figure imgb0005

    The term “synthetic prostacyclins” as used herein can refer to any prostacyclin that can be prepared via synthetic organic chemistry, including those prostacyclins that are also naturally occurring, such as Prostacyclin (PGI2):

     

    Figure imgf000025_0001

    which is also known as Epopreostenol.

    Thus, examples of synthetic prostacyclins include, but are not limited to: Prosta

     

    Figure imgf000025_0002

    lloprost, which has the structure:

     

    Figure imgf000025_0003

    Trepro inil (also known as Rumodolin), which has the structure:

     

    Figure imgf000025_0004

    Beraprost, which has the structure:

     

    Figure imgf000026_0001

    as well as the esters, stereoisomers, and salts thereof, or other analogues or derivatives of the recited synthetic prostacyclins, such as compounds comprising other aliphatic linker groups linking the carboxylic acid group to the cyclic components of the synthetic prostacyclins, compounds containing additional alkene and/or alkyne bonds, and/or compounds containing additional substituents on the cyclic components of the synthetic prostacyclins.

    Figure imgf000031_0001

     iloprost, in contrast to PGI.sub.2 a stable prostacyclin derivative, has been known since 1980 by European patent application EP 11591, no other prostacyclin derivative has previously been tested in this indication. It is therefore reasonable to assume that a spontaneous healing is involved in the published case.

    It has now been found, surprisingly, that iloprost is effective in the case of cerebral malaria.

    For salt formation of iloprost, inorganic and organic bases are suitable, as they are known to one skilled in the art for the formation of physiologically compatible salts. For example, there can be mentioned: alkali hydroxides, such as sodium and potassium hydroxide, alkaline-earth hydroxides, such as calcium hydroxide, ammonia, amines, such as ethanolamine, diethanolamine, triethanolamine, N-methylglucamine, morpholine, tris-(hydroxymethyl)-methylamine, etc.

    The β-cyclodextrin clathrate formation takes place according to EP 259468.

    The production of iloprost is described in detail in EP 11591.

    • Nileprost iloprost, and a process for preparing these compositions.
    • From EP 11 591 already carbacyclin derivatives of the cytoprotective effect on the gastric and intestinal mucosa, and the myocardial cytoprotection using carbacyclin derivatives is known.
    • It has now been found that iloprost (I) and Nileprost (II)

      Figure imgb0001

      and their salts with physiologically acceptable bases and cytoprotective effect in the kidney.

    • Forming salts of iloprost and Nileprost inorganic and organic bases are suitable, as are known to those skilled in the formation of physiologically compatible salts known. Examples which may be mentioned are: alkali metal hydroxides, such as sodium and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, ammonia, amines, such as ethanolamine, diethanolamine, triethanolamine, N-methylglucamine, morpholine, tris (hydroxymethyl) methylamine, etc.
    • The production of iloprost and is described in detail in EP Nileprost 2234 and EP 11591.
    ………………..
    J. Med. Chem., 1986, 29 (3), pp 313–315
    DOI: 10.1021/jm00153a001

see paper

………………………………..
The formal total synthesis of the synthetic and stable analogue of prostacyclin, (16S) iloprost is described via a convergent synthesis starting from readily available d-glucose. Julia olefination and the aldol reaction are the key steps involved in the synthesis.
Full-size image (18 K)
……………………………………
  • Used as the starting material for the method described above ketone of general formula II can be prepared by reacting an alcohol of the formula IV

    Figure imgb0006

    (EJCorey et al., J. Amer. Chem. 93, 1490 (1971)) transformed with dihydropyran in the presence of catalytic amounts of p-toluenesulfonic acid in the tetrahydropyranyl ether V.

    Figure imgb0007
  • [0026]
    Lactone V with Diisobatylauminiumnydrid reduced at -70 ° C to the lactol VI, which is converted by Wittiereaktion Triphenylphosphoniummethylen with the olefin VII. After conversion to the tosylate with p-toluenesulfonyl chloride in the presence of pyridine is obtained by reaction with potassium nitrite in the dimethylsulfoxide 9SS-configured alcohol IX, which is converted with p-toluenesulfonyl chloride in the presence of pyridine in the tosylate X. Reaction with Malonsäurediäthylester in presence of potassium tert-butoxide gives the diester XI, which is converted by decarbalkoxylation with sodium cyanide in dimethyl sulfoxide in the ester XII.

    Figure imgb0008
  • [0027]
    Oxidative cleavage of the double bond in the compound XII with Hatrium p j o dat it out in the presence of catalytic amounts of osmium tetroxide to give the aldehyde XIII, which is oxidized with Jones reagent to the acid XIV which is then esterified with diazomethane to the compound XV. By Dieckmann condensation of XV with potassium tert-butoxide in tetrahydrofuran is obtained a mixture of isomers of the ketocarboxylic acid ester XVI and XVII, which by means of a decarbalkoxylation with 1,4-diazabicyclo [2,2,2] octane in xylene converted into ketone XVIII as the only reaction product is.

    Figure imgb0009
  • [0028]
    The removal of the Tetrahydropyranylätherschutzgruppe delivers the alcohol XIX, which is esterified with benzoyl chloride in the presence of pyridine to give the ester XX.

    Figure imgb0010
  • [0029]
    Benzyläthers hydrogenolytic cleavage of a catalytic amount of acid gives the alcohol XXI, which is according to ketalization compound XXII oxidized with Collins reagent to aldehyde XXIII.
  • [0030]
    This aldehyde XXIV with a phosphonate of the general formula

    Figure imgb0011

    wherein D, E and R 2 have the meanings given above is reacted in a Olefinicrungsreaktion to a ketone of the formula XXV.

    Figure imgb0012
  • [0031]
    After reduction of the 15-keto group with zinc borohydride or sodium borohydride or reaction with alkylmagnesium bromide or alkyllithium and. Epimerentrennung obtain the 15α-alcohols XXVI (PG numbering).

    Figure imgb0013
  • [0032]
    After hydrolysis of the ester group, for example with potassium carbonate in methanol and ketal cleavage with aqueous acetic acid yields the ketone of the formula XXVII,

    Figure imgb0014
……………………………………
ANTHONY MELVIN CRASTO

THANKS AND REGARD’S

DR ANTHONY MELVIN CRASTO Ph.D GLENMARK SCIENTIST , NAVIMUMBAI, INDIA

did you feel happy, a head to toe paralysed man’s soul in action for you round the clock need help, email or call me

MOBILE-+91 9323115463
web link

I was  paralysed in dec2007, Posts dedicated to my family, my organisation Glenmark, Your readership keeps me going and brings smiles to my family

Share
Jan 092014
 

 

FAVIPIRAVIR

Toyama (Originator)

RNA-Directed RNA Polymerase (NS5B) Inhibitors

Chemical Formula: C5H4FN3O2
CAS #: 259793-96-9
Molecular Weight: 157.1

Anti-influenza compound

clinical trials  http://clinicaltrials.gov/search/intervention=Favipiravir
Chemical Name: 6-fluoro-3-hydroxy-2-pyrazinecarboxamide
Synonyms: T-705, T705, Favipiravir

T-705 is an RNA-directed RNA polymerase (NS5B) inhibitor which has been filed for approval in Japan for the oral treatment of influenza A (including avian and H1N1 infections) and for the treatment of influenza B infection.

The compound is a unique viral RNA polymerase inhibitor, acting on viral genetic copying to prevent its reproduction, discovered by Toyama Chemical. In 2005, Utah State University carried out various studies under its contract with the National Institute of Allergy and Infectious Diseases (NIAID) and demonstrated that T-705 has exceptionally potent activity in mouse infection models of H5N1 avian influenza.

T-705 (Favipiravir) is an antiviral pyrazinecarboxamide-based, inhibitor of of the influenza virus with an EC90 of 1.3 to 7.7 uM (influenza A, H5N1). EC90 ranges for other influenza A subtypes are 0.19-1.3 uM, 0.063-1.9 uM, and 0.5-3.1 uM for H1N1, H2N2, and H3N2, respectively. T-705 also exhibits activity against type B and C viruses, with EC90s of 0.25-0.57 uM and 0.19-0.36 uM, respectively. (1) Additionally, T-705 has broad activity against arenavirus, bunyavirus, foot-and-mouth disease virus, and West Nile virus with EC50s ranging from 5 to 300 uM.

Studies show that T-705 ribofuranosyl triphosphate is the active form of T-705 and acts like purines or purine nucleosides in cells and does not inhibit DNA synthesis

In 2012, MediVector was awarded a contract from the U.S. Department of Defense’s (DOD) Joint Project Manager Transformational Medical Technologies (JPM-TMT) to further develop T-705 (favipiravir), a broad-spectrum therapeutic against multiple influenza viruses.

Several novel anti-influenza compounds are in various phases of clinical development. One of these, T-705 (favipiravir), has a mechanism of action that is not fully understood but is suggested to target influenza virus RNA-dependent RNA polymerase. We investigated the mechanism of T-705 activity against influenza A (H1N1) viruses by applying selective drug pressure over multiple sequential passages in MDCK cells. We found that T-705 treatment did not select specific mutations in potential target proteins, including PB1, PB2, PA, and NP. Phenotypic assays based on cell viability confirmed that no T-705-resistant variants were selected. In the presence of T-705, titers of infectious virus decreased significantly (P < 0.0001) during serial passage in MDCK cells inoculated with seasonal influenza A (H1N1) viruses at a low multiplicity of infection (MOI; 0.0001 PFU/cell) or with 2009 pandemic H1N1 viruses at a high MOI (10 PFU/cell). There was no corresponding decrease in the number of viral RNA copies; therefore, specific virus infectivity (the ratio of infectious virus yield to viral RNA copy number) was reduced. Sequence analysis showed enrichment of G→A and C→T transversion mutations, increased mutation frequency, and a shift of the nucleotide profiles of individual NP gene clones under drug selection pressure. Our results demonstrate that T-705 induces a high rate of mutation that generates a nonviable viral phenotype and that lethal mutagenesis is a key antiviral mechanism of T-705. Our findings also explain the broad spectrum of activity of T-705 against viruses of multiple families.

favipiravir

Favipiravir also known as T-705 is an experimental anti-viral drug with activity against many RNA viruses. It, like some other experimental antiviraldrugs—T-1105 and T-1106, is apyrazinecarboxamide derivative. Favipiravir is active against influenza virusesWest Nile virusyellow fever virusfoot-and-mouth disease virus as well as other flavivirusesarenavirusesbunyavirusesand alphaviruses.[1]

The mechanism of its actions is thought to be related to the selective inhibition of viral RNA-dependent RNA polymerase. Favipiravir does not inhibit RNA of DNA synthesis in mammalian cells and is not toxic to them.[1]

  1.  Furuta, Y.; Takahashi, K.; Shiraki, K.; Sakamoto, K.; Smee, D. F.; Barnard, D. L.; Gowen, B. B.; Julander, J. G.; Morrey, J. D. (2009). “T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections”. Antiviral Research 82 (3): 95–102. doi:10.1016/j.antiviral.2009.02.198PMID 19428599edit
  2. WO 2000010569
  3. WO 2008099874
  4. WO 201009504
  5. WO 2010104170
  6. WO 2012063931

 

Process route

OH

OH

hydrolysis

……………………………………………………………………………………

Influenza virus is a central virus of the cold syndrome, which has attacked human being periodically to cause many deaths amounting to tens millions. Although the number of deaths shows a tendency of decrease in the recent years owing to the improvement in hygienic and nutritive conditions, the prevalence of influenza is repeated every year, and it is apprehended that a new virus may appear to cause a wider prevalence.

For prevention of influenza virus, vaccine is used widely, in addition to which low molecular weight substances such as Amantadine and Ribavirin are also used

 

……………………………….

Synthesis of Favipiravir

ZHANG Tao1, KONG Lingjin1, LI Zongtao1,YUAN Hongyu1, XU Wenfang2*

(1. Shandong Qidu PharmaceuticalCo., Ltd., Linzi 255400; 2. School of Pharmacy, Shandong University, Jinan250012)

ABSTRACT: Favipiravir was synthesized from3-amino-2-pyrazinecarboxylic acid by esterification, bromination with NBS,diazotization and amination to give 6-bromo-3-hydroxypyrazine-2-carboxamide,which was subjected to chlorination with POCl3, fluorination with KF, andhydrolysis with an overall yield of about 22%.

………………………………..

US6787544

 

 

Figure US06787544-20040907-C00005

 

subs            G1 G2 G3 G4 R2
    compd 32 N CH C—CF3 N H

…………………

EP2192117

Figure US20100286394A1-20101111-C00001

Example 1-1

 

Figure US20100286394A1-20101111-C00002

 

To a 17.5 ml N,N-dimethylformamide solution of 5.0 g of 3,6-difluoro-2-pyrazinecarbonitrile, a 3.8 ml water solution of 7.83 g of potassium acetate was added dropwise at 25 to 35° C., and the solution was stirred at the same temperature for 2 hours. 0.38 ml of ammonia water was added to the reaction mixture, and then 15 ml of water and 0.38 g of active carbon were added. The insolubles were filtered off and the filter cake was washed with 11 ml of water. The filtrate and the washing were joined, the pH of this solution was adjusted to 9.4 with ammonia water, and 15 ml of acetone and 7.5 ml of toluene were added. Then 7.71 g of dicyclohexylamine was added dropwise and the solution was stirred at 20 to 30° C. for 45 minutes. Then 15 ml of water was added dropwise, the solution was cooled to 10° C., and the precipitate was filtered and collected to give 9.44 g of dicyclohexylamine salt of 6-fluoro-3-hydroxy-2-pyradinecarbonitrile as a lightly yellowish white solid product.

1H-NMR (DMSO-d6) δ values: 1.00-1.36 (10H, m), 1.56-1.67 (2H, m), 1.67-1.81 (4H, m), 1.91-2.07 (4H, m), 3.01-3.18 (2H, m), 8.03-8.06 (1H, m), 8.18-8.89 (1H, broad)

Example 1-2

4.11 ml of acetic acid was added at 5 to 15° C. to a 17.5 ml N,N-dimethylformamide solution of 5.0 g of 3,6-difluoro-2-pyrazinecarbonitrile. Then 7.27 g of triethylamine was added dropwise and the solution was stirred for 2 hours. 3.8 ml of water and 0.38 ml of ammonia water were added to the reaction mixture, and then 15 ml of water and 0.38 g of active carbon were added. The insolubles were filtered off and the filter cake was washed with 11 ml of water. The filtrate and the washing were joined, the pH of the joined solution was adjusted to 9.2 with ammonia water, and 15 ml of acetone and 7.5 ml of toluene were added to the solution, followed by dropwise addition of 7.71 g of dicyclohexylamine. Then 15 ml of water was added dropwise, the solution was cooled to 5° C., and the precipitate was filtered and collected to give 9.68 g of dicyclohexylamine salt of 6-fluoro-3-hydroxy-2-pyrazinecarbonitrile as a slightly yellowish white solid product.

Examples 2 to 5

The compounds shown in Table 1 were obtained in the same way as in Example 1-1.

 

TABLE 1
Figure US20100286394A1-20101111-C00003
Example No. Organic amine Example No. Organic amine
2 Dipropylamine 4 Dibenzylamine
3 Dibutylamine 5 N-benzylmethylamine

 

Dipropylamine salt of 6-fluoro-3-hydroxy-2-pyrazinecarbonitrile

1H-NMR (DMSO-d6) 6 values: 0.39 (6H, t, J=7.5 Hz), 1.10 (4H, sex, J=7.5 Hz), 2.30-2.38 (4H, m), 7.54 (1H, d, J=8.3 Hz)

Dibutylamine salt of 6-fluoro-3-hydroxy-2-pyrazinecarbonitrile

1H-NMR (DMSO-d6) 6 values: 0.36 (6H, t, J=7.3 Hz), 0.81 (4H, sex, J=7.3 Hz), 0.99-1.10 (4H, m), 2.32-2.41 (4H, m), 7.53 (1H, d, J=8.3 Hz)

Dibenzylamine salt of 6-fluoro-3-hydroxy-2-pyrazinecarbonitrile

1H-NMR (DMSO-d6) δ values: 4.17 (4H, s), 7.34-7.56 (10H, m), 8.07 (1H, d, J=8.3 Hz)

N-benzylmethylamine salt of 6-fluoro-3-hydroxy-2-pyrazinecarbonitrile

1H-NMR (DMSO-d6) δ values: 2.57 (3H, s), 4.14 (2H, s), 7.37-7.53 (5H, m), 8.02-8.08 (1H, m)

Preparation Example 1

 

Figure US20100286394A1-20101111-C00004

 

300 ml of toluene was added to a 600 ml water solution of 37.5 g of sodium hydroxide. Then 150 g of dicyclohexylamine salt of 6-fluoro-3-hydroxy-2-pyrazinecarbonitrile was added at 15 to 25° C. and the solution was stirred at the same temperature for 30 minutes. The water layer was separated and washed with toluene, and then 150 ml of water was added, followed by dropwise addition of 106 g of a 30% hydrogen peroxide solution at 15 to 30° C. and one-hour stirring at 20 to 30° C. Then 39 ml of hydrochloric acid was added, the seed crystals were added at 40 to 50° C., and 39 ml of hydrochloric acid was further added dropwise at the same temperature. The solution was cooled to 10° C. the precipitate was filtered and collected to give 65.6 g of 6-fluoro-3-hydroxy-2-pyrazinecarboxamide as a slightly yellowish white solid.

1H-NMR (DMSO-d6) δ values: 8.50 (1H, s), 8.51 (1H, d, J=7.8 Hz), 8.75 (1H, s), 13.41 (1H, s)

 

………………….

jan 2014

Investigational flu treatment drug has broad-spectrum potential to fight multiple viruses
First patient enrolled in the North American Phase 3 clinical trials for investigational flu treatment drug

BioDefense Therapeutics (BD Tx)—a Joint Product Management office within the U.S. Department of Defense (DoD)—announced the first patient enrolled in the North American Phase 3 clinical trials for favipiravir (T-705a). The drug is an investigational flu treatment candidate with broad-spectrum potential being developed by BD Tx through a contract with Boston-based MediVector, Inc.

Favipiravir is a novel, antiviral compound that works differently than anti-flu drugs currently on the market. The novelty lies in the drug’s selective disruption of the viralRNA replication and transcription process within the infected cell to stop the infection cycle.

“Favipiravir has proven safe and well tolerated in previous studies,” said LTC Eric G. Midboe, Joint Product Manager for BD Tx. “This first patient signifies the start of an important phase in favipiravir’s path to U.S. Food and Drug Administration (FDA) approval for flu and lays the groundwork for future testing against other viruses of interest to the DoD.”

In providing therapeutic solutions to counter traditional, emerging, and engineered biological threats, BD Tx chose favipiravir not only because of its potential effectiveness against flu viruses, but also because of its demonstrated broad-spectrum potential against multiple viruses.  In addition to testing favipiravir in the ongoing influenzaprogram, BD Tx is testing the drug’s efficacy against the Ebola virus and other viruses considered threats to service members. In laboratory testing, favipiravir was found to be effective against a wide variety of RNA viruses in infected cells and animals.

“FDA-approved, broad-spectrum therapeutics offer the fastest way to respond to dangerous and potentially lethal viruses,” said Dr. Tyler Bennett, Assistant Product Manager for BD Tx.

MediVector is overseeing the clinical trials required by the  FDA  to obtain drug licensure. The process requires safety data from at least 1,500 patients treated for flu at the dose and duration proposed for marketing of the drug. Currently, 150 trial sites are planned throughout the U.S.

SOURCE BioDefense Therapeutics

 

Efficient synthesis of 3H,3’H-spiro[benzofuran-2,1′-isobenzofuran]-3,3′-dione as novel skeletons specifically for influenza virus type B inhibition.

Malpani Y, Achary R, Kim SY, Jeong HC, Kim P, Han SB, Kim M, Lee CK, Kim JN, Jung YS.

Eur J Med Chem. 2013 Apr;62:534-44. doi: 10.1016/j.ejmech.2013.01.015. Epub 2013 Jan 29.

 

 

US3631036 * Nov 4, 1969 Dec 28, 1971 American Home Prod 5-amino-2 6-substituted-7h-pyrrolo(2 3-d) pyrimidines and related compounds
US3745161 * Apr 20, 1970 Jul 10, 1973 Merck & Co Inc Phenyl-hydroxy-pyrazine carboxylic acids and derivatives
US4404203 * May 14, 1981 Sep 13, 1983 Warner-Lambert Company Substituted 6-phenyl-3(2H)-pyridazinones useful as cardiotonic agents
US4545810 * Mar 25, 1983 Oct 8, 1985 Sds Biotech Corporation Herbicidal and plant growth regulant diphenylpyridazinones
US4565814 * Jan 18, 1984 Jan 21, 1986 Sanofi Pyridazine derivatives having a psychotropic action and compositions
US4661145 * Sep 20, 1984 Apr 28, 1987 Rohm And Haas Company Plant growth regulating 1-aryl-1,4-dihydro-4-oxo(thio)-pyridazines
US5420130 May 16, 1994 May 30, 1995 Synthelabo 2-aminopyrazine-5-carboxamide derivatives, their preparation and their application in therapeutics
US5459142 * Aug 23, 1993 Oct 17, 1995 Otsuka Pharmaceutical Co., Ltd. Pyrazinyl and piperazinyl substituted pyrazine compounds
US5597823 Jun 5, 1995 Jan 28, 1997 Abbott Laboratories Tricyclic substituted hexahydrobenz [e]isoindole alpha-1 adrenergic antagonists
US6159980 * Sep 15, 1997 Dec 12, 2000 Dupont Pharmaceuticals Company Pyrazinones and triazinones and their derivatives thereof
EP0023358A1 * Jul 28, 1980 Feb 4, 1981 Rohm And Haas Company Process for the preparation of pyridazine derivatives
GB1198688A Title not available
HU9401512A Title not available
JPH09216883A * Title not available
JPS5620576A Title not available

 

ANTHONY MELVIN CRASTO

THANKS AND REGARD’S
DR ANTHONY MELVIN CRASTO Ph.D

GLENMARK SCIENTIST , NAVIMUMBAI, INDIA

did you feel happy, a head to toe paralysed man’s soul in action for you round the clock

need help, email or call me

MOBILE-+91 9323115463
web link

I was  paralysed in dec2007, Posts dedicated to my family, my organisation Glenmark, Your readership keeps me going and brings smiles to my family

Share

SURAMIN HEXASODIUM

 Uncategorized  Comments Off on SURAMIN HEXASODIUM
Jan 082014
 

 

suramin

A polyanionic compound with an unknown mechanism of action. It is used parenterally in the treatment of African trypanosomiasis and it has been used clinically with diethylcarbamazine to kill the adult Onchocerca. (From AMA Drug Evaluations Annual, 1992, p1643) It has also been shown to have potent antineoplastic properties.

A polyanionic compound with an unknown mechanism of action. It is used parenterally in the treatment of African trypanosomiasis and it has been used clinically with diethylcarbamazine to kill the adult Onchocerca. (From AMA Drug Evaluations Annual, 1992, p1643) It has also been shown to have potent antineoplastic properties. Suramin is manufactured by Bayer in Germany as Germanin®.

Also known as: Naphuride, Germanin, Naganol, Belganyl, Fourneau, Farma, Antrypol, Suramine, Naganin

8,8′-{Carbonylbis[imino-3,1-phenylenecarbonylimino(4-methyl-3,1-phenylene)carbonylimino]}di(1,3,5-naphthalenetrisulfonic acid) …FREE FORM

8,8′-[Ureylenebis[m-phenylenecarbonylimino(4-methyl-m-phenylene)carbonylimino]]di(1,3,5-naphthalenetrisulfonic acid) hexasodium salt

CAS  145-63-1 FREE FORM

129-46-4 of hexa sodium

LAUNCHED 1940 BAYER

Formula C51H40N6O23S6 
Mol. mass 1297.29

The molecular formula of suramin is C51H34N6O23S6. It is a symmetric molecule in the center of which lies ureaNH-CO-NH. Suramin contains eightbenzene rings, four of which are fused in pairs (naphthalene), four amide groups in addition to the one of urea and six sulfonate groups. When given as drug it usually contains six sodium ions that form a salt with the six sulfonate groups.

Suramin is a drug developed by Oskar Dressel and Richard Kothe of BayerGermany in 1916, and is still sold by Bayer under the brand nameGermanin.

Suramin sodium is a heparanase inhibitor that was first launched in 1940 by Bayer under the brand name Antrypol for the treatment of helminthic infection. It was later launched by Bayer for the treatment of trypanosomiasis (African sleeping sickness).

More recently, the product has entered early clinical development at Ohio State University for the treatment of platinum-pretreated patients with stage IIIB/IV non-small cell lung cancer, in combination with docetaxel or gemcitabine.

The National Cancer Institute (NCI) is conducting phase II clinical studies for the treatment of glioblastoma multiforme and for the treatment of adrenocortical carcinoma.

According to the National Cancer Institute there are no active clinical trials (as of April 1, 2008). Completed and closed clinical trials are listed here:[1]

In addition to Germanin, the National Cancer Institute also lists the following “Foreign brand names”: 309 F or 309 Fourneau,[1] Bayer 205, Moranyl, Naganin, Naganine.

It is used for treatment of human sleeping sickness caused by trypanosomes.[2]

It has been used in the treatment of onchocerciasis.[3]

It has been investigated as treatment for prostate cancer.[4]

Also, suramin as treatment for autism is being evaluated. [5]

Suramin is administered by a single weekly intravenous injection for six weeks. The dose per injection is 1 g.

The most frequent adverse reactions are nausea and vomiting. About 90% of patients will get an urticarial rash that disappears in a few days without needing to stop treatment. There is a greater than 50% chance of adrenal cortical damage, but only a smaller proportion will require lifelongcorticosteroid replacement. It is common for patients to get a tingling or crawling sensation of the skin with suramin. Suramin will cause clouding of the urine which is harmless: patients should be warned of this to avoid them becoming alarmed.

Kidney damage and exfoliative dermatitis occur less commonly.

Suramin has been applied clinically to HIV/AIDS patients resulting in a significant number of fatal occurrences and as a result the application of this molecule was abandoned for this condition. http://www.ncbi.nlm.nih.gov/pubmed/3548350

Suramin is also used in research as a broad-spectrum antagonist of P2 receptors[6][7] and agonist of Ryanodine receptors.[8]

ChemSpider 2D Image | 8,8'-{Carbonylbis[imino-3,1-phenylenecarbonylimino(4-methyl-3,1-phenylene)carbonylimino]}di(1,3,5-naphthalenetrisulfonic acid) | C51H40N6O23S6suramin

Its effect on telomerase has been investigated.[9]

It may have some activity against RNA viruses.[10]

In addition to antagonism of P2 receptors, Suramin inhibits the acitivation of heterotrimeric G proteins in a variety of other GPCRs with varying potency. It prevents the association of heteromeric G proteins and therefore the receptors Guanine exchange functionality (GEF). With this blockade the GDP will not release from the Gα subunit so it can not be replaced by a GTP and become activated. This has the effect of blocking downstream G protein mediated signaling of various GPCR proteins including Rhodopsin, the A1 Adenosine receptor, and the D2 dopamine receptor.[11]

A polyanionic compound with an unknown mechanism of action. It is used parenterally in the treatment of African trypanosomiasis and it has been used clinically with diethylcarbamazine to kill the adult Onchocerca. (From AMA Drug Evaluations Annual, 1992, p1643) It has also been shown to have potent antineoplastic properties. Suramin is manufactured by Bayer in Germany as Germanin®.

8-1-2012
InCl3-catalysed synthesis of 2-aryl quinazolin-4(3H)-ones and 5-aryl pyrazolo[4,3-d]pyrimidin-7(6H)-ones and their evaluation as potential anticancer agents.
Bioorganic & medicinal chemistry letters
9-1-2012
Identification of a sirtuin 3 inhibitor that displays selectivity over sirtuin 1 and 2.
European journal of medicinal chemistry
1-1-2013
Inhibition of the human deacylase Sirtuin 5 by the indole GW5074.
Bioorganic & medicinal chemistry letters
5-9-2013
Discovery of thieno[3,2-d]pyrimidine-6-carboxamides as potent inhibitors of SIRT1, SIRT2, and SIRT3.
Journal of medicinal chemistry
  1.  The formula of suramin was kept secret by Bayer for commercial reasons. But it was elucidated and published in 1924 by Fourneau and his team of the Pasteur Institute, and it is only on this date that its exact chemical composition was known. (E. Fourneau, J. and Th. Tréfouël and J. Vallée (1924). “Sur une nouvelle série de médicaments trypanocides”, C. R. Séances Acad. Sci. 178: 675.)
  2. Darsaud A, Chevrier C, Bourdon L, Dumas M, Buguet A, Bouteille B (January 2004). “Megazol combined with suramin improves a new diagnosis index of the early meningo-encephalitic phase of experimental African trypanosomiasis”Trop. Med. Int. Health 9 (1): 83–91.doi:10.1046/j.1365-3156.2003.01154.xPMID 14728611.
  3.  Anderson J, Fuglsang H (July 1978). “Further studies on the treatment of ocular onchocerciasis with diethylcarbamazine and suramin”Br J Ophthalmol 62 (7): 450–7.doi:10.1136/bjo.62.7.450PMC 1043255PMID 678497.
  4.  Ahles TA, Herndon JE, Small EJ, et al. (November 2004). “Quality of life impact of three different doses of suramin in patients with metastatic hormone-refractory prostate carcinoma: results of Intergroup O159/Cancer and Leukemia Group B 9480”. Cancer 101 (10): 2202–8.doi:10.1002/cncr.20655PMID 15484217.
  5.  http://medicalxpress.com/news/2013-03-drug-treatment-autism-symptoms-mouse.html
  6.  Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA. (september 2006). “International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy”. Pharmacol Rev. 58 (3): 281–341.doi:10.1124/pr.58.3.3PMID 16968944.
  7.  Khakh BS, Burnstock G, Kennedy C, King BF, North RA, Séguéla P, Voigt M, Humphrey PP. (march 2001). “International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits”. Pharmacol Rev. 53 (1): 107–118.PMID 11171941.
  8.  Wolner I, Kassack MU, Ullmann H, Karel A, Hohenegger M (October 2005). “Use-dependent inhibition of the skeletal muscle ryanodine receptor by the suramin analogue NF676”Br. J. Pharmacol. 146 (4): 525–33. doi:10.1038/sj.bjp.0706359PMC 1751178.PMID 16056233.
  9.  Erguven M, Akev N, Ozdemir A, Karabulut E, Bilir A (August 2008). “The inhibitory effect of suramin on telomerase activity and spheroid growth of C6 glioma cells”Med. Sci. Monit. 14(8): BR165–73. PMID 18667993.
  10.  Mastrangelo E, Pezzullo M, Tarantino D, Petazzi R, Germani F, Kramer D, Robel I, Rohayem J, Bolognesi M, Milani M (2012) Structure-based inhibition of norovirus RNA-dependent RNA-polymerases. J Mol Biol
  11.  Beindl W, Mitterauer T, Hohenegger M, Ijzerman AP, Nanoff C, Freissmuth M. (August 1996).“Inhibition of receptor/G protein coupling by suramin analogues”ol. Pharmacology. 50 (2): 415–23. PMID 8700151.
  12. Drugs Fut 1986, 11(10): 860
  13. WO 2012159107
  14. WO 2012087336
  15. US 2011257109
  16. WO 2009022897
  17. WO 2009020613
  18. WO 2008094027
  19.   EP 0486809
  20. US 5158940
  21. US 5173509
  22. WO 1993007864
  23. WO 1994008574

 

SURAMIN

Enterovirus-71 (EV71) is one of the major causative reagents for hand-foot-and-mouth disease. In particular, EV71 causes severe central nervous system infections and leads to numerous dead cases. Although several inactivated whole-virus vaccines have entered in clinical trials, no antiviral agent has been provided for clinical therapy. In the present work, we screened our compound library and identified that suramin, which has been clinically used to treat variable diseases, could inhibit EV71 proliferation with an IC50 value of 40μM. We further revealed that suramin could block the attachment of EV71 to host cells to regulate the early stage of EV71 infection, as well as affected other steps of EV71 life cycle. Our results are helpful to understand the mechanism for EV71 life cycle and provide a potential for the usage of an approved drug, suramin, as the antiviral against EV71 infection.

 

  • Suramin Hexasodium
  • 129-46-4

Synonyms

  • 309 F
  • Antrypol
  • BAY 205
  • Bayer 205
  • CI-1003
  • EINECS 204-949-3
  • Fourneau 309
  • Germanin
  • Moranyl
  • Naganin
  • Naganine
  • Naganinum
  • Naganol
  • Naphuride sodium
  • NF060
  • NSC 34936
  • SK 24728
  • Sodium suramin
  • Suramin Hexasodium
  • Suramin sodium
  • Suramina sodica
  • Suramina sodica [INN-Spanish]
  • Suramine sodique
  • Suramine sodique [INN-French]
  • Suramine sodium
  • Suraminum natricum
  • Suraminum natricum [INN-Latin]
  • UNII-89521262IH

 

Suramin Sodium, is an anticancer agent with a wide variety of activities.

Recently suramin was shown to inhibit FSH binding to its receptor (Daugherty, R. L.; Cockett, A. T. K.; Schoen, S. R. and Sluss, P. M. “Suramin inhibits gonadotropon action in rat testis: implications for treatment of advanced prostate cancer” J. Urol. 1992, 147, 727-732).

This activity causes, at least in part, the decrease in testosterone production seen in rats and humans that were administered suramin(Danesi, R.; La Rocca, R. V.; Cooper, M. R.; Ricciardi, M. P.; Pellegrini, A.; Soldani, P.; Kragel, P. J.; Paparelli, A.; Del Tacca, M.; Myers, C. E, “Clinical and experimental evidence of inhibition of testosterone production by suramin.” J. Clin. Endocrinol. Metab. 1996, 81, 2238-2246).

Suramin is the only non-peptidic small molecule that has been reported to be an FSH receptor binding antagonist.

Figure US06200963-20010313-C00003

Suramin is 8,8′ – (carbonylbis(imino-3,1-phenylenecarbonylimino (4-methyl-3,1-phenylene) carbonylimino)) bis-1,3 ,5-naphthalenetrisulfonic acid (GB Patent No. 224849). This polyanionic compound has been used for many decades as a prophylactic and therapeutic agent for try- panosomiasis. It was subsequently shown that suramin is able to block the activity of a variety of proteins like cellular and viral enzymes and growth factors (Mitsuya, M. et al. Science 226 : 172 (1984), Hosang, M. J. Cell. Biochem. 29 : 265 (1985), De Clercq, E. Cancer Lett. 8 : 9 (1979)).

 

5-32-1977
Complement inhibitors
5-25-1977
Aromatic amidines as antiviral agents in animals
5-4-1977
Complement inhibitors
5-4-1977
Complement inhibitors
4-27-1977
Cyclodextrin sulfate salts as complement inhibitors
4-20-1977
Ureylenebis methyl-phenylene-carbonyl-bis-dihydro-2-oxo-naphthoxazine disultonic acids
3-30-1977
Water treatment for controlling the growth of algae employing biguanides
3-2-1977
Isoxazole substituted nitroimidazoles
2-16-1977
Amidophenyl-azo-naphthalenesulfonic complement inhibitors and method of use thereof
2-9-1977
Complement inhibitors
2-10-2011
MODULATION OF HUMAN MAST CELL ACTIVATION MODULATION OF HUMAN MAST CELL ACTIVATION
11-18-2010
Admixtures for inorganic binders based on a hydrogenated disaccharide, inorganic binders containing these admixtures and process for their preparation Admixtures for inorganic binders based on a hydrogenated disaccharide, inorganic binders containing these admixtures and process for their preparation
10-28-2010
THERAPEUTIC INHIBITORS OF VASCULAR SMOOTH MUSCLE CELLS
9-9-2010
APPARATUS FOR USING ELECTROPORATION MEDIATED DELIVERY OF DRUGS AND GENES
4-8-2010
PREPARATION AND USE OF SULFATED OLIGOSACCHARIDES
10-29-2009
THERAPEUTIC INHIBITOR OF VASCULAR SMOOTH MUSCLE CELLS THERAPEUTIC INHIBITOR OF VASCULAR SMOOTH MUSCLE CELLS
8-20-2009
METHOD OF MAKING MINERAL FIBRES METHOD OF MAKING MINERAL FIBRES
6-25-2009
OXYGEN-FUEL BOOST REFORMER PROCESS AND APPARATUS
4-23-2009
METHODS OF TREATING VASCULAR DISEASE WITH TNF ANTAGONISTS METHODS OF TREATING VASCULAR DISEASE WITH TNF ANTAGONISTS
3-26-2009
COPOLYMER COMPOSITIONS FOR ORAL DELIVERY
5-3-1978
1,3,5- Or 1,3,6-naphthalenetriyltris(sulfonylimino)aryl acids and salts
3-22-1978
Nitroimidazoles
2-15-1978
Treatment of rheumatoid arthritis and related diseases
1-4-1978
AROMATIC AMIDINES AS ANTIVIRAL AGENTS IN ANIMALS
1-4-1978
Malto-dextrin poly(H-)sulfates
12-14-1977
Disazo compounds useful as complement inhibitors
12-7-1977
Bis-substituted naphthalene-azo phenyleneazo-stilbene-disulfonic and naphthalene-sulfonic acid
9-28-1977
UREIDOPHENYLENEBIS(CARBONYLIMINO)DINAPHTHALENETRISULFONIC ACID COMPOUNDS
9-21-1977
Substituted bisnaphthylazo diphenyl ureido complement inhibitors
9-7-1977
Substituted-hydroxy-naphthalenedisulfonic acid compounds

 

1-12-1977
Complement inhibitors
12-22-1976
Complement inhibitors
10-13-1976
Complement inhibitors

 

EP0183352A2 * Sep 27, 1985 Jun 4, 1986 THE UNITED STATES OF AMERICA as represented by the Secretary United States Department of Commerce Use of suramin for clinical treatment of infection with any of the members of the family of human-t-cell leukemia (htvl) viruses including lymphadenopathy virus (lav)
EP0205077A2 * Jun 3, 1986 Dec 17, 1986 Bayer Ag Suramin sodium for use as an immunostimulant

 

EP0515523A1 * Feb 13, 1991 Dec 2, 1992 THE UNITED STATES OF AMERICA as represented by the Secretary United States Department of Commerce Use of suramin to treat rheumatologic diseases
EP0755254A1 * Mar 24, 1995 Jan 29, 1997 The Trustees Of The University Of Pennsylvania Prevention and treatment of ischemia-reperfusion and endotoxin-related injury using adenosine and purino receptor antagonists
EP1460087A1 * Feb 17, 1997 Sep 22, 2004 The Kennedy Institute Of Rheumatology Methods of treating vascular disease with TNF antagonists
EP1940376A2 * Oct 3, 2006 Jul 9, 2008 Rottapharm S.P.A. Use of neboglamine in the treatment of toxicodependency
EP1945204A2 * Oct 27, 2006 Jul 23, 2008 Brane Discovery S.R.L. V-atpase inhibitors for use in the treatment of septic shock
US5453444 * Oct 6, 1994 Sep 26, 1995 Otsuka Pharmaceutical Co., Ltd. Method to mitigate or eliminate weight loss
US5534539 * Jun 12, 1995 Jul 9, 1996 Farmitalia Carlo Erba S.R.L. Biologically active ureido derivatives useful as anit-metastic agenst
US5596105 * Jan 13, 1995 Jan 21, 1997 Farmitalia Carlo Erba S.R.L. Therapeutically active naphthalenesulfonic pyrrolecarboxamido derivatives
US7476693 Mar 26, 2003 Jan 13, 2009 Eastern Virginia Medical School Suramin and derivatives thereof as topical microbicide and contraceptive
US7608262 Feb 16, 1996 Oct 27, 2009 The Kennedy Institute Of Rheumatology Methods of preventing or treating thrombosis with tumor necrosis factor antagonists
US8552064 Dec 19, 2008 Oct 8, 2013 Eastern Virginia Medical School Suramin and derivatives thereof as topical microbicide and contraceptive
WO1994008574A1 * Oct 12, 1993 Apr 28, 1994 Otsuka America Pharmaceutical Treatment of cachexia and inhibition of il-6 activity
WO1994010990A1 * Nov 12, 1993 May 26, 1994 British Bio Technology Inhibition of tnf production
WO1997030088A2 * Feb 17, 1997 Aug 21, 1997 Kennedy Inst Of Rheumatology Methods of treating vascular disease with tnf antagonists
WO2004113920A1 * Jun 18, 2004 Dec 29, 2004 Babon Jeff James Screening method for substances binding to merozoite surface protein-1/42
WO2008138943A2 * May 14, 2008 Nov 20, 2008 Mara Galli Prophylactic and therapeutic use of sirtuin inhibitors in tnf-alpha mediated pathologies
WO2009137471A2 * May 5, 2009 Nov 12, 2009 University Of Miami Azo dye related small molecule modulators of protein-protein interactions
WO2010016628A1 * Jul 10, 2009 Feb 11, 2010 Sammy Opiyo Conjugated suramin amino compounds for medical conditions
WO2012159107A1 * May 21, 2012 Nov 22, 2012 Rhode Island Hospital Inhibition of renal fibrosis

 

 

 

ANTHONY MELVIN CRASTO

THANKS AND REGARD’S
DR ANTHONY MELVIN CRASTO Ph.D

GLENMARK SCIENTIST , NAVIMUMBAI, INDIA

did you feel happy, a head to toe paralysed man’s soul in action for you round the clock

need help, email or call me

MOBILE-+91 9323115463
web link

I was  paralysed in dec2007, Posts dedicated to my family, my organisation Glenmark, Your readership keeps me going and brings smiles to my family

 

 

Share

SOVAPREVIR in phase II clinical trials at Achillion for the oral treatment of naive patients with chronic hepatitis C virus genotype 1

 phase 2, Uncategorized  Comments Off on SOVAPREVIR in phase II clinical trials at Achillion for the oral treatment of naive patients with chronic hepatitis C virus genotype 1
Jan 062014
 

SOVAPREVIR

(2S, 4R) -1 – [(2S)-2-tert-butyl-4-oxo-4-(piperidin-1-yl) butanoyl]-N-{(1R, 2S) -1 – [(cyclopropanesulfonyl) carbamoyl]-2-ethenylcyclopropyl} -4 – [(7-methoxy-2-phenylquinolin-4-yl) oxy] pyrrolidine-2-carboxamide

http://www.ama-assn.org/resources/doc/usan/sovaprevir.pdf

PATENT

US 2009048297 ENTRY 60

WO 2008008502

CN 103420991

 

THERAPEUTIC CLAIM ….Treatment of hepatitis C

CHEMICAL NAMES

1. 2-Pyrrolidinecarboxamide, N-[(1R,2S)-1-[[(cyclopropylsulfonyl)amino]carbonyl]-2-
ethenylcyclopropyl]-1-[(2S)-3,3-dimethyl-1-oxo-2-[2-oxo-2-(1-piperidinyl)ethyl]butyl]-4-
[(7-methoxy-2-phenyl-4-quinolinyl)oxy]-, (2S,4R)-

2. (2S,4R)-N-{(1R,2S)-1-[(cyclopropylsulfonyl)carbamoyl]-2-ethenylcyclopropyl}-1-{(2S)-
3,3-dimethyl-2-[2-oxo-2-(piperidin-1-yl)ethyl]butanoyl}-4-[(7-methoxy-2-phenylquinolin-
4-yl)oxy]pyrrolidine-2-carboxamide

MOLECULAR FORMULA C43H53N5O8S

MOLECULAR WEIGHT 800.0

SPONSOR Achillion Pharmaceuticals, Inc.

CODE DESIGNATION ACH-0141625

CAS REGISTRY NUMBER 1001667-23-7

  • ACH-0141625
  • Sovaprevir
  • UNII-2ND9V3MN6O

Sovaprevir (formerly ACH-0141625), an HCV NS3 protease inhibitor, is in phase II clinical trials at Achillion for the oral treatment of naive patients with chronic hepatitis C virus genotype 1.

In 2012, fast track designation was assigned by the FDA for the treatment of hepatitis C (HCV). In 2013, a clinical hold was placed for the treatment of hepatitis C (HCV) in combination with atazanavir after elevations in liver enzymes associated with the combination of both compounds.

Sovaprevir, previously referred to as ACH-1625, is an investigational, next-generation NS3/4A protease inhibitor discovered by Achillion that is currently on clinical hold. In 2012, Fast Track status was granted by the U.S. Food and Drug Administration (FDA) to sovaprevir for the treatment of chronic hepatitis C viral infection (HCV).

Achillion has initiated a Phase 2 clinical trial (007 Study) to evaluate the all-oral, interferon-free combination of sovaprevir and its second-generation NS5A inhibitor, ACH-3102, with ribavirin (RBV), for a 12 week treatment duration, in treatment naïve, genotype 1 (GT1) HCV patients. In July 2013, sovaprevir was placed on clinical hold after elevated liver enzymes were observed in a Phase 1 healthy subject drug-drug interaction study evaluating the effects of concomitant administration of sovaprevir with ritonavir-boosted atazanavir.

In accordance with the clinical hold, the FDA provided that no new clinical trials that included dosing with sovaprevir could be initiated, however, the FDA allowed continued enrollment and treatment of patients in the Phase 2 -007 clinical trial evaluating 12-weeks of sovaprevir in combination with ACH-3102 and RBV for patients with treatment-naive genotype 1 HCV. In September 2013, after reviewing Achillion’s response, the FDA stated that although all issues identified in the June 2013 letter had been addressed, it had concluded that the removal of the clinical hold was not warranted at this time.

The FDA requested, among other things, additional analysis to more fully characterize sovaprevir pharmacokinetics and the intrinsic and extrinsic factors that may lead to higher than anticipated exposures of sovaprevir or other potential toxicities in addition to the observed liver enzyme elevations.

The FDA also requested Achillion’s proposed plan for future clinical trials in combination with other directly-acting antivirals. At the request of the FDA, Achillion plans to submit a proposed plan for analyzing the additional clinical, non-clinical and pharmacokinetic data requested before the end of 2013, and if that analysis plan is approved by the FDA, submit a complete response during the first half of 2014. Achillion retains worldwide commercial rights to sovaprevir.

 

Sovaprevir has demonstrated activity against all HCV genotypes (GT), including equipotent activity against both GT 1a and 1b (IC50 ~ 1nM) in vitro.

 

With its rapid and extensive partitioning to the liver, as well as high liver/plasma ratios, sovaprevir has been clinically demonstrated to allow for once-daily, non-boosted dosing.

The current safety database for sovaprevir includes more than 560 subjects dosed to date and demonstrates that sovaprevir is well tolerated in these subjects.

Sovaprevir has demonstrated high rates of clinical cures in combination with pegylated-interferon and RBV in a challenging, real world, patient population of genotype 1 treatment-naive patients.

100% of GT1b subjects achieved a rapid virologic response (RVR) in the 007 Study evaluating the interferon-free combination of sovaprevir + ACH-3102 + RBV for 12 weeks. The Phase 2 study is ongoing.

 

Sovaprevir in vitro retains activity against mutations that confer resistance to 1st-generation protease inhibitors.

In clinical studies to date, sovaprevir has demonstrated a high pharmacologic barrier to resistance with no on-treatment viral breakthrough reported to date in GT1b patients.

 

Sovaprevir is believed to be synergistic when combined with other classes of DAAs, including the second-generation NS5A inhibitor, ACH-3102.

For more information about the next-generation NS3/4A protease inhibitor, sovaprevir, please see the Related Links on this page or visit Resources.

Sovaprevir is an investigational compound. Its safety and efficacy have not been established. (Updated December 2013)

SOVAPREVIR

 

An estimated 3% of the world’s population is infected with the hepatitis C virus. Of those exposed to HCV, 80% become chronically infected, at least 30% develop cirrhosis of the liver and 1-4% develop hepatocellular carcinoma. Hepatitis C Virus (HCV) is one of the most prevalent causes of chronic liver disease in the United States, reportedly accounting for about 15 percent of acute viral hepatitis, 60 to 70 percent of chronic hepatitis, and up to 50 percent of cirrhosis, end-stage liver disease, and liver cancer. Chronic HCV infection is the most common cause of liver transplantation in the U.S., Australia, and most of Europe. Hepatitis C causes an estimated 10,000 to 12,000 deaths annually in the United States. While the acute phase of HCV infection is usually associated with mild symptoms, some evidence suggests that only about 15% to 20% of infected people will clear HCV.

HCV is an enveloped, single-stranded RNA virus that contains a positive-stranded genome of about 9.6 kb. HCV is classified as a member of the Hepacivirus genus of the family Flaviviridae. At least 4 strains of HCV, GT-1-GT-4, have been characterized.

The HCV lifecycle includes entry into host cells; translation of the HCV genome, polyprotein processing, and replicase complex assembly; RNA replication, and virion assembly and release. Translation of the HCV RNA genome yields a more than 3000 amino acid long polyprotein that is processed by at least two cellular and two viral proteases. The HCV polyprotein is:

NH2-C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B-COOH.

The cellular signal peptidase and signal peptide peptidase have been reported to be responsible for cleavage of the N-terminal third of the polyprotein (C-E1-E2-p7) from the nonstructural proteins (NS2-NS3-NS4A-NS4B-NS5A-NS5B). The NS2-NS3 protease mediates a first cis cleavage at the NS2-NS3 site. The NS3-NS4A protease then mediates a second cis-cleavage at the NS3-NS4A junction. The NS3-NS4A complex then cleaves at three downstream sites to separate the remaining nonstructural proteins. Accurate processing of the polyprotein is asserted to be essential for forming an active HCV replicase complex.

Once the polyprotein has been cleaved, the replicase complex comprising at least the NS3-NS5B nonstructural proteins assembles. The replicase complex is cytoplasmic and membrane-associated. Major enzymatic activities in the replicase complex include serine protease activity and NTPase helicase activity in NS3, and RNA-dependent RNA polymerase activity of NS5B. In the RNA replication process, a complementary negative strand copy of the genomic RNA is produced. The negative strand copy is used as a template to synthesize additional positive strand genomic RNAs that may participate in translation, replication, packaging, or any combination thereof to produce progeny virus. Assembly of a functional replicase complex has been described as a component of the HCV replication mechanism. Provisional application 60/669,872 “Pharmaceutical Compositions and Methods of Inhibiting HCV Replication” filed Apr. 11, 2005, is hereby incorporated by reference in its entirety for its disclosure related to assembly of the replicase complex.

Current treatment of hepatitis C infection typically includes administration of an interferon, such as pegylated interferon (IFN), in combination with ribavirin. The success of current therapies as measured by sustained virologic response (SVR) depends on the strain of HCV with which the patient is infected and the patient’s adherence to the treatment regimen. Only 50% of patients infected with HCV strain GT-1 exhibit a sustained virological response. Direct acting antiviral agents such as ACH-806, VX-950 and NM 283 (prodrug of NM 107) are in clinical development for treatment of chronic HCV. Due to lack of effective therapies for treatment for certain HCV strains and the high mutation rate of HCV, new therapies are needed.

 

…………………………………………

https://www.google.co.in/patents/US20090048297

(2S,4R)-1-((S)-2-tert-butyl-4-oxo-4-(piperidin-1-yl)butanoyl)-N-((1R,2S)-1-(cyclopropylsulfonylcarbamoyl)-2-vinylcyclopropyl)-4-(7-methoxy-2-phenylquinolin-4-yloxy)pyrrolidine-2-carboxamide

 

 

Figure US20090048297A1-20090219-C00105

 

SOVAPREVIR IS DESCRIBED AS 60 IN CLAIM

 

SYNTHESIS OF INTERMEDIATE 13 BELOW AND ALSO  COMPD 8 IE SOVAPREVIR IN STEP 4

 

Example 1

SYNTHESIS OF 1-((2S,4R)-1-((S)-2-TERT-BUTYL-4-OXO-4-(PIPERIDIN-1-YL)BUTANOYL)-4-(7-METHOXY-2-PHENYLQUINOLIN-4-YLOXY)PYRROLIDINE-2-CARBOXAMIDO)-2-VINYLCYCLOPROPANECARBOXYLIC ACID

Step 1. Preparation of N-(cyclopropylsulfonyl)-1-(BOC-amino)-2-vinylcyclopropanecarboxamide

 

Figure US20090048297A1-20090219-C00047

 

CDI (2.98 g, 18.4 mm, 1.1 eq) is dissolved in ethyl acetate. N-Boc-cyclopropylvinyl acid (3.8 g, 16.7 mm, 1.0 eq), prepared via the procedure given by Beaulieu, P. L. et al. (J. Org. Chem. 70: 5869-79 (2005)) is added to the CDI/ethyl acetate mixture and stirred at RT until the starting material is consumed. Cyclopropyl sulfonamine (2.2 g, 18.4 mm, 1.1 eq) is added to this mixture followed by DBU (2.1 ml, 20.5 mm, 1.23 eq) and the mixture is stirred at RT for 2 h. Workup and purification by silica gel chromatography provides 2g of compound 2.

Step 2. Preparation of (2S,4R)-tert-butyl 2-(1-(cyclopropylsulfonylcarbamoyl)-2-vinylcyclopropylcarbamoyl)-4-(7-methoxy-2-phenylquinolin-4-yloxy)pyrrolidine-1-carboxylate and (2S,4R)—N-(1-(cyclopropylsulfonylcarbamoyl)-2-vinylcyclopropyl)-4-(7-methoxy-2-phenylquinolin-4-yloxy)pyrrolidine-2-carboxamide

 

Figure US20090048297A1-20090219-C00048

 

Compound 1 (4.3 g, 9.3 mmol, 1.1 eq), prepared according to the method given ins WO 02/060926, in DMF is stirred with O-(Benzotriazol-lyl)-N,N,N′,N′-Tetramethyluronium hexafluorophosphate (4.1 g, 10.5 mmol, 1.3 eq) for 30 minutes, followed by addition of cyclopropylamine 2 (1.92 g, 8.3 mmol, 1.0 eq) and N-methylmorpholine (2.52 g, 25.0 mmol, 3.0 eq). The mixture is stirred over night and the solvent removed under reduced pressure. The resulting residue is diluted with ethyl acetate and washed with saturated aqueous NaHCO3. The organic solvent is dried over MgSOand concentrated under reduced pressure to afford crude 3, which is used for next step without further purification.

Compound 3 in 10 ml dry CH2Clis treated with 5 mL TFA and stirred over night. The solvent is removed and the residue recrystallized from ethyl acetate to afford 4.12 g Compound 4 (61% yield two steps).

Step 3. Preparation of (3S)-3-((2S,4R)-2-(1-(cyclopropylsulfonylcarbamoyl)-2-vinylcyclopropylcarbamoyl)-4-(7-methoxy-2-phenylquinolin-4-yloxy)pyrrolidine-1-carbonyl)-4,4-dimethylpentanoic acid

 

Figure US20090048297A1-20090219-C00049

 

The Acid 5 (58 mg, 0.25 mmol, 1.2 eq), prepared via the procedure given by Evans, D. A., et al. (J. Org. Chem. 64: 6411-6417 (1999)) in 1.2 mL DMF is stirred with 4 (138 mg, 0.21 mmol), HATU (160 mg, 0.42 mmol, 2.0 eq), and DIEA (0.63 mmol, 3.0 eq) overnight. The mixture is subjected to HPLC purification to afford 121 mg 6 (77% yield), which is further treated with 0.5 mL TFA in 1.0 mL DCM overnight. The solvent was removed to provide Compound 7 in 100% yield.

Step 4. Preparation of (2S,4R)-1-((S)-2-tert-butyl-4-oxo-4-(piperidin-1-yl)butanoyl)-N-(1-(cyclopropylsulfonylcarbamoyl)-2-vinylcyclopropyl)-4-(7-methoxy-2-phenylquinolin-4-yloxy)pyrrolidine-2-carboxamide

 

Figure US20090048297A1-20090219-C00050

PLEASE  NOTE 8 IS SOVAPREVIR

The Acid 7 (0.15 mmol) in 1.0 mL DMF is stirred with pepridine (excess, 0.6 mmol, 4 eq), HATU (115 mg, 0.3 mmol, 2.0 eq), and DIEA (0.45 mmol, 3.0 eq) for 4 hrs. The mixture is subjected to HPLC purification to afford 77.1 mg 8.

Step 5. Preparation of (3S)-3-((2S,4R)-2-(1-(ethoxycarbonyl)-2-vinylcyclopropylcarbamoyl)-4-(7-methoxy-2-phenylquinolin-4-yloxy)pyrrolidine-1-carbonyl)-4,4-dimethylpentanoic acid

 

Figure US20090048297A1-20090219-C00051

 

Step 5. Preparation of (3S)-3-((2S,4R)-2-(1-(ethoxycarbonyl)-2-vinylcyclopropylcarbamoyl)-4-(7-methoxy-2-phenylquinolin-4-yloxy)pyrrolidine-1-carbonyl)-4,4-dimethylpentanoic acid

The Acid 5 (105 mg, 0.46 mmol, 1.2 eq) in 1.2 mL DMF is stirred with 9 (202 mg, 0.38 mmol), HATU (290 mg, 0.76 mmol, 2.0 eq), and DIEA (1.2 mmol, 3.0 eq) overnight. The mixture is subjected to HPLC purification to afford 204.3 mg 10 (75% yield), which is further treated with 0.5 mL TFA in 1.0 mL DCM overnight. The solvent is removed to provide 11 in 100% yield.

 

Figure US20090048297A1-20090219-C00052

 

Step 6. Preparation of Final Product

The Acid 11 (30 mg, 0.045 mmol) in 1.0 mL DMF is stirred with pepridine (0.27 mmol, 6 eq), HATU (34 mg, 0.09 mmol, 2.0 eq), and DIEA (0.14 mmol, 3.0 eq) for 2 hrs. The mixture is subjected to HPLC purification to afford 21.2 mg 12 (65% yield), which is hydrolyzed in methanol with 2N NaOH for 6 hrs. The mixture is acidified with 6N HCl and subjected to HPLC purification to afford 7.6 mg 13.

………………………………

 

 picture    animation

ANTHONY MELVIN CRASTO

THANKS AND REGARD’S
DR ANTHONY MELVIN CRASTO Ph.D

GLENMARK SCIENTIST , NAVIMUMBAI, INDIA

did you feel happy, a head to toe paralysed man’s soul in action for you round the clock

need help, email or call me

MOBILE-+91 9323115463
web link

I was  paralysed in dec2007, Posts dedicated to my family, my organisation Glenmark, Your readership keeps me going and brings smiles to my family

Share

ASUNAPREVIR

 Uncategorized  Comments Off on ASUNAPREVIR
Dec 242013
 

 

ASUNAPREVIR

630420-16-5 CAS

 

THERAPEUTIC CLAIM Treatment of hepatitis C
CHEMICAL NAMES
1. Cyclopropanecarboxamide, N-[(1,1-dimethylethoxy)carbonyl]-3-methyl-L-valyl-(4R)-4-[(7-chloro-4-methoxy-1-isoquinolinyl)oxy]-L-prolyl-1-amino-N-(cyclopropylsulfonyl)-2-ethenyl-, (1R,2S)-
2. 1,1-dimethylethyl [(1S)-1-{[(2S,4R)-4-(7-chloro-4methoxyisoquinolin-1-yloxy)-2-({(1R,2S)-1-[(cyclopropylsulfonyl)carbamoyl]-2-ethenylcyclopropyl}carbamoyl)pyrrolidin-1-yl]carbonyl}-2,2-dimethylpropyl]carbamate

MOLECULAR FORMULA C35H46ClN5O9S
MOLECULAR WEIGHT 748.3

SPONSOR Bristol-Myers Squibb
CODE DESIGNATION ………..BMS-650032
CAS REGISTRY NUMBER 630420-16-5

ChemSpider 2D Image | asunaprevir | C35H46ClN5O9S

 

Asunaprevir (formerly BMS-650032) is an experimental drug candidate for the treatment of hepatitis C. It is undergoing development by Bristol-Myers Squibb and is currently inPhase III clinical trials.[1]

In 2013, the company Bristol-Myers Squibb received breakthrough therapy designation in the U.S. for the treatment of chronic hepatitis C in combination with daclatasvir and BMS-791325.

Asunaprevir is an inhibitor of the hepatitis C virus enzyme serine protease NS3.[2]

Asunaprevir is being tested in combination with pegylated interferon and ribavirin, as well as in interferon-free regimens with other direct-acting antiviral agents includingdaclatasvir[3][4][5]

Asunaprevir is an antiviral agent originated by Bristol-Myers Squibb undergoing the registration in Japan for the treatment of chronic hepatitis C virus infection in combination with daclatasvir in patients who are non-responsive to interferon plus ribavirin and interferon based therapy ineligible naive/intolerant

 

  1. “A Phase 3 Study in Combination With BMS-790052 and BMS-650032 in Japanese Hepatitis C Virus (HCV) Patients”ClinicalTrials.gov.
  2. C. Reviriego (2012). Drugs of the Future 37 (4): 247–254.doi:10.1358/dof.2012.37.4.1789350.
  3.  Preliminary Study of Two Antiviral Agents for Hepatitis C Genotype 1. Lok, A et al. New England Journal of Medicine. 366(3):216-224. January 19, 2012.
  4.  “Bristol-Myers’ Daclatasvir, Asunaprevir Cured 77%: Study”Bloomberg. Apr 19, 2012.
  5. AASLD: Daclatasvir plus Asunaprevir Rapidly Suppresses HCV in Prior Null Responders. Highleyman, L. HIVandHepatitis.com. 8 November 2011.
  6. Bioorganic and Medicinal Chemistry Letters, 2011 ,  vol. 21,   7  pg. 2048 – 2054

patents

WO 2003099274, WO 2003099274, WO 2009085659

 

6-20-2012
Crystalline forms of N-(tert-butoxycarbonyl)-3-methyl-L-valyl-(4R)-4-((7-chloro-4-methoxy-1-isoquinolinyl)oxy)-N- ((1R,2S)-1-((cyclopropylsulfonyl)carbamoyl)-2-vinylcyclopropyl)-L-prolinamide
4-25-2012
Hepatitis C Virus Inhibitors
3-30-2011
HEPATITIS C VIRUS INHIBITORS
11-12-2008
Hepatitis C virus inhibitors
2-8-2006
Hepatitis C virus inhibitors

……….

Hepatitis C virus (HCV) is a major human pathogen, infecting an estimated 170 million persons worldwide—roughly five times the number infected by human immunodeficiency virus type 1. A substantial fraction of these HCV infected individuals develop serious progressive liver disease, including cirrhosis and hepatocellular carcinoma.

Presently, the most effective HCV therapy employs a combination of alpha-interferon and ribavirin, leading to sustained efficacy in 40 percent of patients. Recent clinical results demonstrate that pegylated alpha-interferon is superior to unmodified alpha-interferon as monotherapy. However, even with experimental therapeutic regimens involving combinations of pegylated alpha-interferon and ribavirin, a substantial fraction of patients do not have a sustained reduction in viral load. Thus, there is a clear and unmet need to develop effective therapeutics for treatment of HCV infection.

Figure US08338606-20121225-C00018
Figure US08338606-20121225-C00019
http://www.google.com/patents/US8338606

……………………

https://www.google.co.in/patents/WO2003099274A1?dq=WO+2003099274&ei=fje5Us3WBo3JrQfcsoHgAw&cl=en

Compound 277

Compound 277 was prepared by following Scheme 2 of Example 269 except that 3- (4-chloro-phenyl)-3-methoxy-acrylic acid was used in place of 2- trifluormethoxycinnamic acid in step 1.

Step 1:

Modifications: 4.24 g 3-(4-chloro-phenyl)-3-methoxy-acrylic acid used, 130 mg product obtained (3% yield) Product:

Figure imgf000383_0002

Data: 1H NMR(400 MHz, CD3OD) δ ppm 3.96 (s, 3 H), 7.19 (dd, 7=8.80, 2.45 Hz, 1 H), 7.28 (d, 7=2.45 Hz, 1 H), 7.34 (s, 1 H), 8.25 (d, 7=9.05 Hz, 1 H); MS: (M+H)+ 210.

Step 2:

Modifications: 105 mg 7-chloro-4-methoxy-2H-isoquinolin-l-one used, 60 mg product obtained (71% yield). Product:

Figure imgf000384_0001

Data: Η NMR (400 Hz, CDC13) δ ppm 4.05 (s, 3 H), 7.67 (dd, 7=8.80, 1.96 Hz, 1 H), 7.80 (s, 1 H), 8.16 (d, 7=9.05 Hz, 1 H), 8.24 (d, 7=1.96 Hz, 1 H); MS: (M+H)+ 229.

Step 3:

Modifications: 46 mg l,7-dichloro-4-methoxy-isoquinoline and 113 mg { l-[2-(l- cyclopropanesulfonylaminocarbonyl-2-vinyl-cyclopropylcarbamoyl)-4-hydroxy- pyrrolidine-1 -carbon yl]-2,2-dimethyl-propyl} -carbamic acid tert-butyl ester used, 50 mg product obtained (31% yield). Product:

Figure imgf000384_0002

Compound 277

Data: 1H NMR (400 Hz, CD3OD) δ ppm 1.06 (m, 11 H), 1.16 (s, 9 H), 1.24 (m, 2 H), 1.44 (dd, 7=9.54, 5.38 Hz, 1 H), 1.88 (dd, 7=8.07, 5.62 Hz, 1 H), 2.28 (m, 2 H), 2.59 (dd, 7=13.69, 6.85 Hz, 1 H), 2.94 (m, 1 H), 4.00 (s, 3 H), 4.05 (d, 7=11.74 Hz, 1 H), 4.19 (s, 1 H), 4.43 (d, 7=11.49 Hz, 1 H), 4.56 (dd, 7=10.03, 6.85 Hz, 1 H), 5.12 (d, 7=11.49 Hz, 1 H), 5.30 (d, 7=17.12 Hz, 1 H), 5.76 (m, 2 H), 7.57 (s, 1 H), 7.67 (d, 7=8.56 Hz, 1 H), 8.04 (s, 1 H), 8.08 (d, 7=8.80 Hz, 1 H); MS: (M+H)+ 749.

 

 

 

…………..

https://www.google.co.in/patents/US6995174?dq=WO+2003099274&ei=1DW5Uoa0C4GTrgfy84HgBQ&cl=en

Figure US06995174-20060207-C00021

 

 

Figure US06995174-20060207-C00022

 

………………

WO 2003099274

Figure US06995174-20060207-C00038

 

https://www.google.co.in/patents/US6995174?dq=WO+2003099274&ei=fje5Us3WBo3JrQfcsoHgAw&cl=en

…………………….

 

https://www.google.co.in/patents/US20090202476?dq=WO+2009085659&ei=dzy5UpL_LMXXrQewxYG4Dw&cl=en

 

Figure US20090202476A1-20090813-C00018

 

Figure US20090202476A1-20090813-C00019

 

Preparation of Compound C

DMSO (264 ml) was added to a mixture of Compound A (6 g, 26.31 mmol, 1.0 eq, 96.5% potency), Compound B (6.696 g, 28.96 mmol, 1.1 eq) and KOtBu (8.856 g, 78.92 mmol, 3 eq) under nitrogen and stirred at 36° C. for 1 h. After cooling the dark solution to 16° C., it was treated with water (66 ml) and EtOAc (132 ml). The resulting biphasic mixture was acidified to pH 4.82 with 1N HCl (54 ml) at 11.2-14.6° C. The phases were separated. The aqueous phase was extracted once with EtOAc (132 ml). The organic phases were combined and washed with 25% brine (2×132 ml). Rich organic phase (228 ml) was distilled at 30-40° C./50 mbar to 37.2 ml. A fresh EtOAc (37.2 ml) was added and distilled out to 37.2 ml at 30-35° C./50 nm bar. After heating the final EtOAc solution (37.2 ml) to 50° C., heptane ((37.2 ml) was added at 46-51° C. and cooled to 22.5° C. over 2 h. It was seeded with 49 mg of Compound C and held at 23° C. for 15 min to develop a thin slurry. It was cooled to 0.5° C. in 30 min and kept at 0.2-0.5° C. for 3 h. After the filtration, the cake was washed with heptane (16.7 ml) and dried at 47° C./80 mm/15.5 h to give Compound C as beige colored solids (6.3717 g, 58.9% corrected yield, 99.2% potency, 97.4 AP).

Preparation of Compound E

DIPEA (2.15 ml, 12.3 mmol, 1.3 eq followed by EDAC (2 g, 10.4 mmol, 1.1 eq) were added to a mixture of Compound C (4 g, 9.46 mmol, 97.4% potency, 98.5 AP), Compound D (4.568 g, 11.35 mmol, 1.20 eq), HOBT-H2O (0.86 g, 4.18 mmol, 0.44 eq) in CH2Cl2 (40 ml) at 23-25° C. under nitrogen. The reaction was complete after 3 h at 23-25° C. It was then washed with 1N HCl (12 ml), water (12 ml) and 25% brine (12 ml). MeOH (80 ml) was added to the rich organic solution at 25° C., which was distilled at atmospheric pressure to ˜60 ml to initiate the crystallization of the product. The crystal slurry was then cooled from 64° C. to 60° C. in 5 min and stirred at 60° C. for 1 h. It was further cooled to 24° C. over 1.5 h and held at 24° C. for 2 h. After the filtration, the cake was washed with MeOH (12 ml) and dried at 51° C./20-40 nm i/18 h to give Compound E (5.33 g, 89% yield, 97.7% potency, 99.1 AP).

Preparation of Compound F

5-6N HCl in IPA (10.08 ml, 50.5 mmol, Normality: 5N) was added in four portions in 1 h to a solution of Compound E (8 g, 12.6 mmol, 97.7% potency, 99.1 AP) in IPA (120 ml) at 75° C. After stirring for 1 h at 75° C., the resulting slurry was cooled to 21° C. in 2 h and stirred at 21° C. for 2 h. It was filtered and the cake was washed with IPA (2×24 ml). The wet cake was dried at 45° C./House vacuum/16 h to give Compound F as an off-white solid (6.03 g, 84.5% yield, 98.5% potency, 100 AP).

Preparation of Compound (I)

DIPEA (9.824 ml) followed by HATU (7.99 g) were added to a stirred mixture of Compound F (10 g, 99.2% potency, 99.6 AP) and Compound G (4.41 g) in CH2Cl2 (100 ml) at 2.7-5° C. under nitrogen. The resulting light brown solution was stirred at 0.2-3° C. for 1.5 h, at 3-20° C. in 0.5 h and at 20-23° C. for 15.5 h for a reaction completion. It was quenched with 2N HCl (50 ml) at 23° C. and stirred for 20 min at 23-24° C. The biphasic mixture was polish filtered through diatomaceous earth (Celite®) (10 g) to remove insoluble solids of HOAT and HATU. The filter cake was washed with 20 ml of CH2Cl2. After separating the organic phase from the filtrates, it was washed with 2N HCl (5×50 ml) and water (2×50 ml). The organic phase (115 ml) was concentrated to ˜50 ml, which was diluted with absolute EtOH (200 proof, 100 ml) and concentrated again to ˜50 ml. Absolute EtOH (50 ml) was added to bring the final volume to 100 ml. It was then warmed to 50° C. to form a clear solution and held at 50° C. for 35 min. The ethanolic solution was cooled from 50 to 23° C. over 15 min to form the crystal slurry. The slurry was stirred at 23 CC for 18 h, cooled to 0.3° C. over 30 min and kept at 0.2-0.3° C. for 2 h. After the filtration, the cake was washed with cold EtOH (2.7° C., 2×6 ml) and dried at 53° C./72 mm/67 h to give Compound (I) in Form T1F-1/2 as an off white solid (10.49 g, 80.7% yield, 99.6 AP).https://www.google.co.in/patents/US20090202476?dq=WO+2009085659&ei=dzy5UpL_LMXXrQewxYG4Dw&cl=en

………

extra info

Hepatitis C virus (HCV) infection is the principal cause of chronic liver disease that can lead to cirrhosis, carcinoma and liver failure.1 More than 200 million people worldwide are chronically infected by this virus. Currently, the most effective treatment for HCV infection is based on a combination therapy of injectable pegylated interferon-α (PEG IFN-α) and antiviral drug ribavirin. This treatment, indirectly targeting the virus, is associated with significant side effects often leading to treatment discontinuation in certain patient populations.2 In addition, this treatment regimen cures only less than 50% of patients infected with genotype-1 which is the predominant genotype (while genotype 1a is most abundant in the US, the majority of sequences in Europe and Japan are from genotype 1b).3 Limited efficacy and adverse side effects of current treatment, and high prevalence of infection worldwide highlight an urgent need for more effective, convenient, and well-tolerated treatments.4

HCV NS3 serine protease plays a critical role in the HCV replication by cleaving downstream sites (with the assistance of the cofactor NS4A) along the HCV viral polyprotein to produce functional proteins. Recently, NS3/4A protease inhibitors have emerged as a promising treatment for HCV infection.5 There are two distinct classes of NS3 protease inhibitors in clinical development. The first class is comprised of serine-trap inhibitors, exemplified by VX-950 (telaprevir)6 and SCH-503034 (boceprevir).7 The second class is represented by reversible noncovalent inhibitors such as macrocyclic inhibitors BILN-2061 (ciluprevir),8 ITMN-191 (danoprevir),9 TMC-43535010 and MK-7009 (vaniprevir).11 Due to concern over cardiac issues in animals treated with macrocyclic BILN-2061,12 newer acyclic inhibitors have recently been developed exemplified by BI-20133513 and BMS-650032.14 However, a rapid development of viral resistance has been observed for patients treated with HCV NS3 protease inhibitors.15 Therefore, the discovery of new NS3 protease inhibitors with novel binding paradigm and thus potentially differentiated resistance profile is highly desirable.

References and notes

    • F. Zoulim, M. Chevallier, M. Maynard, C. Trepo
    • Rev. Med. Virol., 13 (2003), p. 57
    • M.W. Fried
    • Hepatology, 36 (2002), p. S237
    • B.L. Pearlman
    • Am. J. Med., 117 (2004), p. 344
    • (a) R. Flisiak, A. Parfieniuk
    • For a recent review on HCV anti-viral agents, see: Expert Opin. Invest. Drugs, 19 (2010), p. 63
    • (b) A.D. Kwong, L. McNair, I. Jacobson, S. George
    • Curr. Opin. Pharmacol., 8 (2008), p. 522
    • (a) K.X. Chen, F.G. Njoroge
    • For a recent review on HCV NS3/4A protease inhibitors, see: Curr. Opin. Invest. Drugs, 10 (2009), p. 821
    • (b) M. Reiser, J. Timm
    • Expert Rev. Anti. Infect. Ther., 7 (2009), p. 537
    • C. Lin, A.D. Kwong, R.B. Perni
    • Infect. Disord. Drug Targets, 6 (2006), p. 3
    • F.G. Njoroge, K.X. Chen, N.Y. Shih, J.J. Piwinski
    • Acc. Chem. Res., 41 (2008), p. 50
    • M. Llinàs-Brunet, M.D. Bailey, G. Bolger, C. Brochu, A.M. Faucher, J.M. Ferland, M. Garneau, E. Ghiro, V. Gorys, C. Grand-Maître, T. Halmos, N. Lapeyre-Paquette, F. Liard, M. Poirier, M. Rhéaume, Y.S. Tsantrizos, D. Lamarre
    • J. Med. Chem., 47 (2004), p. 1605
    • S.D. Seiwert, S.W. Andrews, Y. Jiang, V. Serebryany, H. Tan, K. Kossen, P.T. Rajagopalan, S. Misialek, S.K. Stevens, A. Stoycheva, J. Hong, S.R. Lim, X. Qin, R. Rieger, K.R. Condroski, H. Zhang, M.G. Do, C. Lemieux, G.P. Hingorani, D.P. Hartley, J.A. Josey, L. Pan, L. Beigelman, L.M. Blatt
    • Antimicrob. Agents Chemother., 52 (2008), p. 4432
    • P. Raboisson, H. de Kock, A. Rosenquist, M. Nilsson, L. Salvador-Oden, T.I. Lin, N. Roue, V. Ivanov, H. Wähling, K. Wickström, E. Hamelink, M. Edlund, L. Vrang, S. Vendeville, W. Van de Vreken, D. McGowan, A. Tahri, L. Hu, C. Boutton, O. Lenz, F. Delouvroy, G. Pille, D. Surleraux, P. Wigerinck, B. Samuelsson, K. Simmen
    • Bioorg. Med. Chem. Lett., 18 (2008), p. 4853
    • J.A. McCauley, C.J. McIntyre, M.T. Rudd, K.T. Nguyen, J.J. Romano, J.W. Butcher, K.F. Gilbert, K.J. Bush, M.K. Holloway, J. Swestock, B.L. Wan, S.S. Carroll, J.M. Dimuzio, D.J. Graham, S.W. Ludmerer, S.S. Mao, M.W. Stahlhut, C.M. Fandozzi, N. Trainor, D.B. Olsen, J.P. Vacca, N.J. Liverton
    • J. Med. Chem., 53 (2010), p. 2443
    • H. Hinrichsen, Y. Benhamou, H. Wedemeyer, M. Reiser, R.E. Sentjens, J.L. Calleja, X. Forns, A. Erhardt, J. Crönlein, R.L. Chaves, C.L. Yong, G. Nehmiz, G.G. Steinmann
    • Gastroenterology, 127 (2004), p. 1347
    • M. Llinàs-Brunet, M.D. Bailey, N. Goudreau, P.K. Bhardwaj, J. Bordeleau, M. Bös, Y. Bousquet, M.G. Cordingley, J. Duan, P. Forgione, M. Garneau, E. Ghiro, V. Gorys, S. Goulet, T. Halmos, S.H. Kawai, J. Naud, M.A. Poupart, P.W. White
    • J. Med. Chem., 53 (2010), p. 6466
    • (a)Chemical and Engineering News (April 12, 2010 issue), 88, pp 30–33.
    • (b)Perrone, R.K.; Wang, C.; Ying, W.; Song, A.I. WO 2009085659
    • L. Rong, H. Dahari, R.M. Ribeiro, A.S. Perelson
    • Sci. Transl. Med., 2 (2010), p. 30ra32

………

Share

Zalicus starts Phase Ib clinical trial of neuropathic pain drug

 phase 2, Uncategorized  Comments Off on Zalicus starts Phase Ib clinical trial of neuropathic pain drug
Nov 142013
 

Zalicus

Biopharmaceutical firm Zalicus has started a Phase Ib clinical trial of Z944, a novel oral T-type calcium channel blocker, for the treatment of neuropathic pain.

The company expects to release the results from the laser-evoked potentials (LEP) study in the fourth quarter of 2013.

The study is designed to offer both objective and subjective data on a drug’s ability to modulate pain signalling.

http://www.drugdevelopment-technology.com/news/newszalicus-starts-phase-ib-clinical-trial-of-neuropathic-pain-drug

Z944 is a novel, oral, T-type calcium channel modulator that we are developing for pain.

Z944, an oral T-type Calcium Channel Modulator

Z944 is a novel, oral, state-dependent, selective T-type calcium channel modulator that has demonstrated efficacy in multiple preclinical inflammatory pain models and in a Phase 1b experimental model of pain. T-type calcium channels have been recognized as key targets for therapeutic intervention in a broad range of cell functions and have been implicated in pain signaling. Zalicus is planning to advance a modified release formulation of Z944 through further clinical development.

The wide distribution of T-type calcium channels found in brain, heart, endocrine cells and other tissues provides the possibility of developing therapeutics for multiple indications, including treatment of pain. Zalicus has utilized its expertise in this field to successfully discover high affinity, selective and orally available compounds, such as Z944, that show promise for further development.

 

T-type Calcium Channel Modulators

T-type, or transient-type (referring to the length of time activated), calcium channel modulators target low-voltage-activated, calcium channels. These channels have been recognized as critical components in numerous cell functions and have been implicated in the frequency and intensity of pain signals. Zalicus is investigating compounds to modulate T-type calcium channel signaling in the treatment of pain. Our orally-administered T-type calcium channel blockers have shown efficacy in animal models of acute, chronic and visceral pain, as well as other indications.

patent

WO2009146540

http://www.google.com/patents/WO2009146540A1

compd may be

N-[1-(N-tert-Butylcarbamoylmethyl)piperidin-4-ylmethyl]-3-chloro-5-fluorobenzamide

Share

Pfizer 2013 and beyond

 companies  Comments Off on Pfizer 2013 and beyond
Oct 252013
 

Pfizer

Pfizer gets a lot of coverage in the financial papers–even if some of it turns out to be misguided.

For example, Pfizer got the media coverage all drug companies desire on May 4 from Seeking Alpha, http://seekingalpha.com/article/560531-pfizer-alzheimers-drugs-will-carry-stock-to-new-highs-in-2013

a stock market blog that provides free stock market analysis. A piece entitled “Pfizer: Alzheimer’s Drugs Will Carry Stock To New Highs In 2013” had a subheading “strong pipeline.”

Turns out that was too optimistic, as Pfizer’s Alzheimer’s drug–along with Johnson and Johnson’s–both failed to produce. But many stock analysts still hold hope that Pfizer has a new ‘cash cow’ coming down the pipeline.

Daily Finance http://www.dailyfinance.com/2012/09/07/a-peek-at-pfizers-pipeline/

notes that Pfizer currently has 87 drugs in its pipeline. While its true that most are in the early stages, 11 are ready to be reviewed by the FDA.

That number puts it ahead of most of its rivals, with Eli Lilly, a close second, having 63 drugs in Phases 1-3, plus one currently being reviewed. Bristol-Myers Squibb has 46 drugs in development, 7 under review, Merck has 35 drugs in Phase 2 or 3 with two under review, and Johnson and Johnson has 18 drugs that are already in Phase 3 clinical trials or up for FDA approval.

But, of course, as the journal points out, “Quality trumps quantity. . . . One or two blockbusters can be better than several lower-revenue drugs.”

So what does Pfizer have up its sleeve that might begin to fill the very big shoes of Lipitor?

Well, the company has diversified the therapeutic areas under research, with 26% of R&D efforts going toward oncology treatments, 20% to neuroscience and pain, 17% to cardiovascular and metabolic diseases, 14% to inflammation and immunology, 5% to vaccines, and 18% toward ‘other.’

Pfizer has several medicines for diabetes alone coming up, in Phase I and Phase II trials, almost all meant to treat type 2 diabetes.

But, notes Seeking Alpha,http://seekingalpha.com/article/560531-pfizer-alzheimer-s-drugs-will-carry-stock-to-new-highs-in-2013

its blockbuster potential in this area is limited by the existing treatments of Merck and Sanofi. 10% of Sanofi’s total sales come from Lantus,

Lantus

a diabetes drug useful for both types 1 and 2, and Merck made $1.3 billion off its Januvia

januvia

franchise in the first quarter of this year alone.

So hopes are pinned on Pfizer’s tofacitinib, currently under FDA review, as the treatment with the potential to earn $1 billion or more in sales, easing the gaping wound left by Lipitor. Tofacitinib prompts such high hopes because it might possibly treat rheumatoid arthritis, psoriasis, and irritable bowel syndrome. Some analysts have pinned this as the cash cow Pfizer so badly needs to replace treatments lost to the patent cliff.

Tofacitinib

http://seekingalpha.com/article/812981-pfizers-success-with-its-jak-inhibitor

If it gets approved, Tofacitinib would be first treatment for rheumatoid arthritis (RA) in a new class of medicines (known as Jenus kinase, or JAK, inhibitors), and the first JAK inhibitor approved for rheumatoid arthritis.

Tofacitinib showed statistically significant improvement compared to placebo in decreasing the symptoms of RA (as measured by 20% improvement in the American College of Rheumatology scale), in improving physical function (as measured by mean change in Health Assessment Questionnaire-Disability Index), and in leading to remission (as measured by Disease Activity Score 28 ESR).

Joel Kremer, MD, chief of medicine at Albany Medical College in N.Y., after analyzing the data, commented, “Tofacitinib appears to reduce the signs and symptoms of rheumatoid arthritis very quickly. We hope that after carefully considering the benefit/risk equation, this compound will provide an additional valuable treatment option for patients who have experienced inadequate response to prior treatments.”

Pfizer also believes its blood thinner Eliquis, which it is developing with Bristol-Myers Squibb (see below) could be a big money-maker.

apixaban, eliquis

Share

AltheRx obtains US patent for solabegron combination therapy for OAB treatment

 phase 2, Uncategorized  Comments Off on AltheRx obtains US patent for solabegron combination therapy for OAB treatment
Oct 212013
 

solabegron

AltheRx Pharmaceuticals has received a notice of allowance for its patent application from the US Patent and Trademark Office (USPTO) for the use of solabegron, a beta 3-adrenergic receptor agonist, in combination with antimuscarinics at both therapeutic and sub-therapeutic doses, for the treatment of overactive bladder (OAB).

AltheRx obtains US patent for solabegron combination therapy for OAB treatment

http://www.pharmaceutical-technology.com/news/newsaltherx-obtains-us-patent-for-solabegron-combination-therapy-for-oab-treatment?WT.mc_id=DN_News

 

Solabegron (GW-427,353) is a drug which acts as a selective agonist for the β3 adrenergic receptor. It is being developed for the treatment of overactive bladder andirritable bowel syndrome.[1][2][3] It has been shown to produce visceral analgesia by releasing somatostatin from adipocytes.,[4][5]

Solabegron was discovered by GlaxoSmithKline and acquired by AltheRx in March 2011. Solabegron relaxes the bladder smooth muscle by stimulating beta-3 adrenoceptors, a novel mechanism compared to older established drug treatments for overactive bladder syndrome such as the anticholinergic agents. Astellas Pharma have developed the first commercially available β3 adrenergic receptor, mirabegron, which is now licensed in Japan[6] and the US[7] for overactive bladder. Mirabegron is not licensed for irritable bowel syndrome.

A Phase II study of Solabegron for overactive bladder (OAB) looked at 258 patients with moderate to severe incontinence experiencing an average of 4.5 wet episodes per day. Results demonstrated a statistically significant improvement with Solabegron as compared to placebo, as measured by the percent reduction of the number of wet episodes and the absolute number of daily voids.

A Phase II study for irritable bowel syndrome (IBS) evaluated 102 patients with IBS. Solabegron demonstrated significant reduction in pain associated with the disorder and a trend for greater improvement in the quality of life, compared to placebo.

Both Phase II studies indicated a tolerability profile for Solabegron that was similar to placebo. The OAB patients did not suffer from dry mouth, constipation, increase in heart rate or cognitive issues.

AltheRx is currently preparing to advance Solabegron into a large clinical study in OAB.

Synthesis

Solabegron scheme.png

  1.  Hicks A, McCafferty GP, Riedel E, Aiyar N, Pullen M, Evans C, Luce TD, Coatney RW, Rivera GC, Westfall TD, Hieble JP. GW427353 (solabegron), a novel, selective beta3-adrenergic receptor agonist, evokes bladder relaxation and increases micturition reflex threshold in the dog. Journal of Pharmacology and Experimental Therapeutics. 2007 Oct;323(1):202-9.doi:10.1124/jpet.107.125757 PMID 17626794
  2.  Grudell AB, Camilleri M, Jensen KL, Foxx-Orenstein AE, Burton DD, Ryks MD, Baxter KL, Cox DS, Dukes GE, Kelleher DL, Zinsmeister AR. Dose-response effect of a beta3-adrenergic receptor agonist, solabegron, on gastrointestinal transit, bowel function, and somatostatin levels in health.American Journal of Physiology. Gastrointestinal and Liver Physiology. 2008 May;294(5):G1114-9. PMID 18372395
  3.  Kelleher DL, Hicks KJ, Cox DS, et al. Randomized, double-blind, placebo (PLA)-controlled, crossover study to evaluate efficacy and safety of the beta 3-adrenergic receptor agonist solabegron (SOL) in patients with irritable bowel syndrome (IBS). Neurogastroenterol Motil 2008;20 (Suppl 2):131.
  4.  Cellek S, Thangiah R, Bassil AK, Campbell CA, Gray KM, Stretton JL, Lalude O, Vivekanandan S, Wheeldon A, Winchester WJ, Sanger GJ, Schemann M, Lee K. Demonstration of functional neuronal beta3-adrenoceptors within the enteric nervous system. Gastroenterology. 2007 Jul;133(1):175-83.
  5. Schemann M, Hafsi N, Michel K, Kober OI, Wollmann J, Li Q, Zeller F, Langer R, Lee K, Cellek S. The beta3-adrenoceptor agonist GW427353 (solabegron) decreases excitability of human enteric neurons via release of somatostatin.Gastroenterology 2009 Sep 25. [Epub ahead of print]
  6.  http://www.ncbi.nlm.nih.gov/pubmed/22384458
  7.  http://chembl.blogspot.co.uk/2012/07/new-drug-approvals-2012-pt-xiv.html
Share

MONOCLONAL ANTIBODIES

 MONOCLONAL ANTIBODIES  Comments Off on MONOCLONAL ANTIBODIES
Oct 172013
 

PPT from many87

Production of MAb

Fig.1 Production of MAb

Large Scale Production Of MAbs:

Commercially, on large scale, MAbs are produced by two methods.

(a) Ascites production in mice

(b) In-vitro fermentation

The production method is summarized in Fig.no.2a & 2b.

a) Ascites Production In Mice:

The first monoclonal antibodies approved by FDA for therapeutic use OKTS, is produced by ascitic technology19.

In this method hybridoma cells are injected into peritoneal cavity of histocompatible mice. The mice are pretreated by i.p. injection of Pristane to irritate the peritoneal cavity which facilitates the growth of ascitic tumor. The fluid produced may contain the high concentration of secreted MAbs, 2 to 20 μg / ml and 2 to 6 ml or more can be harvested per mouse. Comparison of different MAb production22,23 methods is shown inTable 1.

Drawbacks of this method are:

1. It is very costly, very difficult and not reliable.

2. Product may get contaminated with mouse immunoglobulins and also with other mouse proteins.

3. Viruses can be introduced as contaminants.

4. Antibody yield is often less as compared to other methods.

b) In-Vitro Fermentation:

In this method, the cells are grown and gradually moved to larger and larger culture ensuring exponential growth. Typical antibody levels in the culture supernatant ranges from 5-50 μg/ml depending on the individual clone and on cell density. When more production of antibody is required 1-litre cultures in roller bottles are used. Required cells are removed from rest of media by centrifugation or filtration, generally followed by ultra filtration step for concentrating the filtrate by up to 20 folds.

Advantages of this method are:

(1) As serum required in culture media is reduced, it is cost effective.

(2) There will not be any contamination with mouse immunoglobulin.

But the major drawback is that of contamination of final product with serum or protein based growth factors.

Table 1: Comparison of different MAb production methods.

Production system

Scale

Volume (ml)

Concentration (mg/ml)

Production time (weeks)

Quality

Ascites (in vivo)

20-250 mg

5-10

< 20

2-3

Low
Stir growth

100-2500

0.01-0.1

2-3

High
Dialysis membrane

< 50 mg

10-25

0.1-1.5

2-5

High
Roller bottles

< 2 gm

100-2000

0.01-0.2

2-6

High
Hollow fiber

0.15-30 gm

25-1000

0.2-0.3

3-12

High
Fermentor

2-100 gm

< 2000 lit

0.05-0.5

2-12

High

 MAb Production

Fig. 2a:  MAb Production (Flowchart)

 Freeze Dried MAb Production

Fig. 2b:  Freeze Dried MAb Production (Flowchart)

i) Purification:

Contamination, during production process, such as protein, nucleic acid, endotoxins, immunoglobulin and adventitious agent can be removed by purification method. The purification methods such as precipitation with ammonium sulphate, zone electrophoresis, ion exchange chromatography, hydrophobic interaction chromatography, gel filtration and affinity chromatography are used19.

· Affinity chromatography is often used for initial purification.

· Ion exchange chromatography is used for removing endotoxins and DNA.

· Gel filtration chromatography can remove both high and low molecular form of monoclonal antibodies and it is usually used as the final polishing step.

j) Characterization:

The final determination of monoclonality requires biochemical and biophysical characterization of the immunoglobulin. It is also characterized immunochemically to define its affinity for antigen, its immunoglobulin subclass, the epitopes for which it is specific and the effective number of binding site that it possesses19.

k) Final Processing:

Depending upon the intended application, the antibody may be conjugated to specific radionuclide or toxin. Then the stabilizing agent is added, and the product is filled into final container under inert gas or other specialized conditions.  Lyophillization is frequently applied to get freeze dried product.

Antigenicity Of Murine MAb:

The main problem for mouse MAb is that, human body recognizes it as a foreign agent and produces antibodies against such mouse MAb. The induced human anti-mouse antibodies (HAMA) quickly reduce the effectiveness of mouse MAb and also their interaction may lead to allergic reactions.

To overcome the problem, Human MAbs can be used. Though difficult, this is possible by fusion of EBV (Epstein Barr Virus) transformed human B-lymphocyte with appropriate fusion partners21. EBV is a lymphotrophic DNA herpes virus which is capable of converting normal B-lymphocytes of human and/or mouse into cancer cell having proliferating capacity in vitro. But the presence of EBV as contaminant can pose a problem of producing cancer24.

Even the human-human hybridomas producing MAbs have been produced 25,26. Olsson and Kaplan in the year 1980 produced first human-human myeloma (SKO-007), against the hapten 2, 4-dinitrophenyl (DNP) 19.

The routine production of human MAbs is prevented due to following reason:-

  • Sources of antibody producing cells27.
  • Reliable methods for lymphocytes immortalization.
  • Stability28 and antibody producing capacity.
  • Administration of some antigens to humans could endanger their health29.
  • Recovery of B-lymphocytes from the spleen of human is impracticable.
  • The fusion of human lymphocytes with human lymphoblastoid cell lines is a very inefficient process.
  • Low production yield of human monoclonal antibody.

Hence, other alternatives methods come forth.

Advantages Of MAbs:

  • Pure one molecular species with high specificity for a particular antigenic target.
  • Anti-serum titer values are high.
  • Antibodies with high avaidity can be produced.
  • In vitro and in vivo production is possible.
  • Radiolabelling and fluorescent conjugation of monoclonal antibody are easy.

Disadvantages Of MAbs:

  • Initial cost involved in the technique is high. However, continuous production is somewhat economical.
  • Methods are time consuming.
  • Antigenicity of Murine MAb.
  • MAbs have comparatively less complement fixing ability than that of convectional antiserum.
  • MAbs are highly selective for a particular single antigenic determinant. This renders them incapable of distinguish between different molecules, cells bearing the chemical structure or determinants except one against which it is targeted.
  • The high antibody avidity (energy of binding to an antigen) of MAbs is advantageous for immunoassay but some property is undesirable for purification process.
Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: