AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

Lupin to co-market Novartis’ asthma drug in India

 Uncategorized  Comments Off on Lupin to co-market Novartis’ asthma drug in India
May 112016
 

Lupin to co-market Novartis’ asthma drug in India

Business Standard

BS B2B Bureau  |  Mumbai April 12, 2016 Last Updated at 10:27 IST

Novartis Healthcare will continue to market Sequadra (indacaterol/glycopyrronium inhaler), while Lupin will promote the inhaler under the brand name Loftair in India

read original article at

http://www.business-standard.com/content/b2b-pharma/lupin-to-co-market-novartis-asthma-drug-in-india-116041200249_1.html

 

/////inhaler, Novartis Healthcare,  Sequadra, indacaterol, glycopyrronium inhaler,  Lupin,  inhaler,  brand name,  Loftair, India

Share

P7435 from Piramal Enterprises Mumbai, India

 phase 1  Comments Off on P7435 from Piramal Enterprises Mumbai, India
Apr 052016
 

str1

str1

P7435

Piramal Enterprises Mumbai, India

P-7435; P7435-DGAT1, P7435, P 7435

CAS 1210756-48-1,
C22 H19 F N4 O4 S
L-​Valine, N-​[[3-​[4-​[(6-​fluoro-​2-​benzothiazolyl)​amino]​phenyl]​-​5-​isoxazolyl]​carbonyl]​-
Molecular Weight, 454.47

GDAT1 inhibitor

  • Phase IDiabetes mellitus; Lipid metabolism disorders
  • ClassAntihyperglycaemics; Antihyperlipidaemics; Small molecules
  • Mechanism of ActionDiacylglycerol O acyltransferase inhibitors
Company Piramal Enterprises Ltd.
Description Diacylglycerol O-acyltransferase-1 (DGAT1) inhibitor
Molecular Target Diacylglycerol O-acyltransferase-1 (DGAT1)
Mechanism of Action Diacylglycerol O-acyltransferase-1 (DGAT1) inhibitor
Therapeutic Modality
Latest Stage of Development Phase I
Standard Indication Metabolic (unspecified)
Indication Details Treat metabolic disorders

https://clinicaltrials.gov/ct2/show/NCT01910571

https://clinicaltrials.gov/ct2/show/NCT01764425

  • 24 Nov 2014Piramal Enterprises completes a phase I trial in healthy, overweight or obese subjects in USA (NCT01910571)
  • 17 Jun 2014Adverse events and pharmacokinetics data from a phase I trial in healthy male volunteers presented at the 74th Annual Scientific Sessions of the American Diabetes Association (ADA-2014)
  • 17 Jun 2014Pharmacodynamics data from preclinical studies in Dyslipidaemia and obesity presented at the 74th Annual Scientific Sessions of the American Diabetes Association (ADA-2014)

Chairman Ajay Piramal

Swati Piramal-The Vice Chairperson of Piramal Enterprises Ltd

Nandini Piramal, Executive Director, Piramal Enterprises

Piramal Enterprises gets US FDA approval for P7435 IND

http://www.pharmabiz.com/NewsDetails.aspx?aid=76992&sid=2

Our Bureau, Mumbai
Tuesday, August 06, 2013, 12:25 Hrs  [IST]

Piramal Enterprises Ltd has received US Food and Drug Administration (FDA) approval for its Investigational New Drug (IND) P7435. This is a novel, potent and highly selective, oral diacylglycerolacyltransferase 1 (DGAT1) inhibitor.

P7435 has been developed by the NCE Research Division of PEL for the management of metabolic disorders such as lipid abnormalities and diabetes. It is well-established that increased lipid levels’ (including triglycerides) is one of the major risk factors for cardiovascular disease (CVD). It has been reported by the World Health Organisation, that CVD, is the number one cause of deaths globally, representing approximately 30 per cent of all deaths. Currently, there is a significant medical need for effective and safe drugs for the management of lipid abnormalities and metabolic disorders.

P7435 has demonstrated its lipid lowering potential in various preclinical studies by showing significant reduction in triglyceride levels, glucose and insulin levels,and decrease in food intake and body weight gain -factors which are associated with lipid abnormalities and metabolic disorders.

PEL has established the safety and tolerability of P7435 in a phase I trial recently completed in India. This extension trial in the US will further evaluate the safety and efficacy of P7435 in a larger population.

Dr Swati Piramal, vice chairperson, Piramal Enterprises, said, “The NCE Research division of PEL continues its ambitious diabetes/metabolic disorders programme to discover and develop NCEs to fight against diseases like diabetes and lipid disorders. With P7435 we are looking at addressing a serious need for effective and well-tolerated drugs that treat lipid disorders, which are commonly associated with diabetes and CVDs. Expansion of this trial will allow testing this NCE in a wider population,which is critical to the development of this drug and will provide therapeutic solutions not just to India but also to the rest of the world.”

The NCE Research division of Piramal Enterprises focuses on the discovery and development of innovative small molecule medicines to improve the lives of patients suffering from cancer, metabolic disorders and inflammatory conditions. The key elements of its strategy include capitalizing on Piramal’s strengths, in particular the India advantage, and leveraging external partnerships to achieve high levels of R&D productivity. Piramal’s state-of-the-art Research Centre in Mumbai has comprehensive capabilities spanning target identification all the way through clinical development. Its robust pipeline, including 8 compounds in clinical development, bears testimony to its innovative and rigorous drug discovery process.

PAPER

European Journal of Medicinal Chemistry (2012), 54, 324-342

http://www.sciencedirect.com/science/article/pii/S0223523412003133

PATENT

WO 2010023609

http://www.google.co.in/patents/WO2010023609A1?cl=en

/////////Piramal Enterprises,  Mumbai, India, P-7435, P7435-DGAT1, P7435, P 7435, GDAT1 inhibitor

O=C(O)[C@@H](NC(=O)c1cc(no1)c2ccc(cc2)Nc3nc4ccc(F)cc4s3)C(C)C

Share

CFG 920, Novartis Scientists team up with Researchers at Aurigene, Bangalore, India,

 phase 2, Uncategorized  Comments Off on CFG 920, Novartis Scientists team up with Researchers at Aurigene, Bangalore, India,
Apr 052016
 

str1

CFG920,

Inhibitor Of Prostate Cancer With Fewer Cardiac Side Effects

Cas 1260006-20-9

Novartis
Target: CYP17/CYP11B2
Disease: Castration-resistant prostate cancer

MF C14H13ClN4O
MW: 288.0778

Elemental Analysis: C, 58.24; H, 4.54; Cl, 12.28; N, 19.40; O, 5.54

Steroid 17-alpha-hydroxylase inhibitors

CFG920 is a CYP17 inhibitor, is also an orally available inhibitor of the steroid 17-alpha-hydroxylase/C17,20 lyase (CYP17A1 or CYP17), with potential antiandrogen and antineoplastic activities. Upon oral administration, CYP17 inhibitor CFG920 inhibits the enzymatic activity of CYP17A1 in both the testes and adrenal glands, thereby inhibiting androgen production. This may decrease androgen-dependent growth signaling and may inhibit cell proliferation of androgen-dependent tumor cells.

https://clinicaltrials.gov/ct2/show/NCT01647789
NCT01647789: A Study of Oral CFG920 in Patients With Castration Resistant Prostate Cancer2012 

  • 09 Nov 2015Adverse events, efficacy and pharmacokinetics data from the phase I part of a phase I/II trial in Prostate cancer (Metastatic disease) presented at the 27th AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics (AACR-NCI-EORTC-2015)
  • 29 Jan 2013Phase-I clinical trials in Prostate cancer in Spain (PO)
  • 10 Dec 2012Phase-I clinical trials in Prostate cancer in Canada (PO)

In August 2015, preclinical data were presented at the 250th ACS meeting in Boston, MA. In monkeys, treatment with CFG-920 (3 mg/kg, po) showed good bioavailability with F value of 93%, Tmax of 0.5 h, Cmax of 1382 nM.dn and AUC of 2364 nM.h, while CFG-920 (10 mg/kg, po) showed F value of 183%, Cmax of 1179 nM.dn and Tmax of 1.04 h

 

str1

Bethany Halford on Twitter: “CFG920 – @Novartis CMOS for …

twitter.com

Bethany Halford on Twitter: “CFG920 – @Novartis CMOS for castration resistant prostate cancer #ACSBoston MEDI 1st disclosures http://t.co/XJJ3tCvpUk”

Novartis is developing CFG-920 (structure shown), an oral CYP17 inhibitor, for the potential treatment of metastatic castration-resistant prostate cancer. In March 2013, a phase I/II trial was initiated and at that time, the study was expected to complete in January 2015; in August 2015, clinical data were presented

2015 250th (August 19) Abs MEDI 341
Discovery of CFG920, a dual CYP17/CYP11B2 inhibitor, for the treatment of castration resistant prostate cancer
American Chemical Society National Meeting and Exposition
Christoph Gaul, Prakash Mistry, Henrik Moebitz, Mark Perrone, Bjoern Gruenenfelder, Nelson Guerreiro, Wolfgang Hackl, Peter Wessels, Estelle Berger, Mark Bock, Saumitra Sengupta, Venkateshwar Rao, Murali Ramachandra, Thomas Antony, Kishore Narayanan, Samiulla Dodheri, Aravind Basavaraju, Shekar Chelur

09338-scitech1-NovartisAcxd

CHEMISTRY COLLABORATORS
Novartis-Aurigene team: (from left) Brahma Reddy V, Thomas Antony, Murali Ramachandra, Venkateshwar Rao G, Wesley Roy Balasubramanian, Kishore Narayanan, Samiulla DS, Aravind AB, and Shekar Chelur. Not pictured: Björn Grünenfelder, Saumitra Sengupta, Nelson Guerreiro, Andrea Gerken, Mark Perrone, Mark Bock, Wolfgang Hackl, Henrik Möbitz, Peter Wessels, Christoph Gaul, Prakash Mistry, and Estelle Marrer.
Credit: Aurigene

Preclinical and clinical studies were performed to evaluate the efficacy of CFG-920, a dual cytochrome P450 (CYP)17 and CYP11B2 dual inhibitor, for the potential treatment of castration resistant prostate cancer. CFG-920 showed potent activity against human CYP17 and CYP11B2 enzymes with IC50 values of 0.023 and 0.034 microM, respectively. In monkeys, treatment with CFG-920 (3 mg/kg, po) showed good bioavailability (93%), Tmax of 0.5 h, Cmax of 1382 nM.dn and AUC of 2364 nM.h, while CFG-920 (10 mg/kg, po) showed F value of 183%, Cmax of 1179 nM.dn and Tmax of 1.04 h. In a phase I, first-in-man study, patients received continuous po dosing of CFG-920 (50 mg, bid) plus prednisone (5 mg) in 28-day cycles. At the time of presentation, CFG-920 was under phase II development.

 

Print
CFG920

WO 2010149755

09338-scitech1-Novartisgrocxd
Novartis team: (clockwise from left) Wolfgang Hackl, Henrik Möbitz, Peter Wessels, Christoph Gaul, Prakash Mistry, and Estelle Marrer., Credit: Novartis

Prostate cancer is the most commonly occurring cancer in men. Doctors often treat the metastatic stage of the disease by depriving the patient of sex hormones via chemical or surgical castration. But if it progresses far enough, the cancer can survive this therapy, transforming into the castration-resistant form. “Once the cancer becomes castration-resistant, the prognosis is poor,” said Novartis’s Christoph Gaul.

In recent years, CYP17, a bifunctional 17α-hydroxylase/17,20-lyase cytochrome P450 enzyme, has emerged as a target for treating castration-resistant prostate cancer. The enzyme catalyzes the biosynthesis of sex hormones, including testosterone, and blocking it can starve prostate cancer of the androgens it needs to thrive.

Johnson & Johnson’s CYP17 inhibitor, abiraterone acetate (Zytiga), a steroid that binds irreversibly to CYP17, was approved by the Food & Drug Administration in 2011. But Novartis scientists thought they could make a better CYP17 inhibitor, Gaul told C&EN. They teamed up with researchers at Aurigene, in Bangalore, India, and came up with their clinical candidate, CFG920.

Unlike abiraterone, CFG920 isn’t a steroid, and it inhibits CYP17 reversibly. It also reversibly inhibits another cytochrome P450 enzyme, CYP11B2, which is involved in the synthesis of the mineralocorticoids, hormones that regulate cardiac function.

Treating prostate cancer patients by lowering their androgen levels turns out to have negative cardiac side effects: Patients’ lipid metabolism is thrown off and their mineralocorticoid levels jump, leading to increases in blood pressure. Those changes can be stressful for the heart. “If prostate cancer patients don’t die because of the cancer, a lot of times they die because of cardiac disease,” Gaul said.

Because CFG920 also keeps mineralocorticoid levels in check, Novartis is hoping the drug candidate will ameliorate some of the cardiac side effects of inhibiting CYP17. The compound is currently in Phase I clinical trials.

PATENT

WO 2010149755

https://www.google.co.in/patents/WO2010149755A1?cl=en

Example 58

Prύpιn”ation ofI'(2’ChIoroψ}ri(ibi-^’\l)’3’f4’metMψ}τUin’3’yl)-imiJazoliJin’2’θne (5HA)-

Figure imgf000079_0001

Using the same reaction conditions as in Example 14. 1-(4-methyl-pyridin-3-yl)- itnida/olidin-2-onc ().-.!.4b: 600 mg. 3.3898 mmol) uas reacted with 2-chloro-4-iodo- py.idine (974 mg.4.067 mmol). 1 , 4-dioxane (60 mL). copper iodide (65 mg, 0.3398 mmol), /r<w.v-1.2-diamino cycK)hexane (0.12 ml,, 1.0169 mmol) and potassium phosphate (2.15 g, 10.1694 mmol) to afford 810 mg of the product (83% yield).

1H NMR (C1DCI3. 300 Mi l/): 6 8.5-8.4 (m. 211). 8.3 (d. IH), 7.6-7.5 (m, 2H). 7.2 (S. 111). 4.1-3.9 (ni. 4H), 2.35 <s. 3H)

LCVIS puιϊt>: 90.8%. nι-7 – 289.1 (M M)

HPl C: 97.14%

REFERENCES

1: Gomez L, Kovac JR, Lamb DJ. CYP17A1 inhibitors in castration-resistant prostate cancer. Steroids. 2015 Mar;95:80-7. doi: 10.1016/j.steroids.2014.12.021. Epub 2015 Jan 3. Review. PubMed PMID: 25560485; PubMed Central PMCID: PMC4323677.

2: Yin L, Hu Q, Hartmann RW. Recent progress in pharmaceutical therapies for castration-resistant prostate cancer. Int J Mol Sci. 2013 Jul 4;14(7):13958-78. doi: 10.3390/ijms140713958. Review. PubMed PMID: 23880851; PubMed Central PMCID: PMC3742227.

///////CFG-920,  CYP17 inhibitor (prostate cancer), Novartis, CFG 920, Novartis scientists,   team up , researchers ,  Aurigene, Bangalore, India,

Share

Indian Generics 2016

 PROCESS, regulatory  Comments Off on Indian Generics 2016
Aug 032015
 

 

The generic APIs market is expected to continue to rise faster than the branded/innovative APIs, by 7.7%/year to reach $30.3 billion in 2016. Asia-Pacific is expected to show the fastest growth rates (10.8%/year). The 24 fastest growing markets will include 11 in Asia-Pacific, seven in Eastern Europe and CIS, four in Africa-Middle East and two in Latin America (Figure ).

Figure  – Top growth markets for generic APIs to 2016

By 2016, China will account for 27.7% of the global generic API merchant market, while the US will have fallen to 23.8%; the mature markets as a whole will see their share fall from 41.8% in 2012 to 36.9%. India will be the third largest, with a 7.2% share.

 

 

 

 

 

101st Anniversary of the First Electric Traffic Signal System

 

Share

Gatifloxacin

 Uncategorized  Comments Off on Gatifloxacin
Jun 182015
 
Gatifloxacin.svg
GATIFLOXACIN
BMS-206584, CG-5501, AM-1155, Zymar, Bonoq, Gatiflo, AM-1155
(±)-1-Cyclopropyl-6-fluoro-8-methoxy-7-(3-methyl-1-piperazinyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid
Gatifloxacin sold under the brand names GatifloTequin and Zymar, is an antibiotic of the fourth-generation fluoroquinolonefamily,[1] that like other members of that family, inhibits the bacterial enzymes DNA gyrase and topoisomerase IVBristol-Myers Squibb introduced Gatifloxacin in 1999 under the proprietary name Tequin for the treatment of respiratory tract infections, having licensed the medication from Kyorin Pharmaceutical Company of Japan. Allergan produces it in eye-drop formulation under the names Zymar and Zymaxid. In many countries, gatifloxacin is also available as tablets and in various aqueous solutions forintravenous therapy.
Originally developed at Kyorin, gatifloxacin was first licensed to Gruenenthal in Europe, and that company still maintains rights to the oral and injectable formulations of the product. In October 1996, Kyorin licensed gatifloxacin to BMS, granting the company development and marketing rights in the U.S., Canada, Australia, Mexico, Brazil and certain other markets. In 2006, rights to the compound were returned by BMS. Subsequently, Senju and Kyorin signed a licensing agreement regarding the development of ethical eye drops containing the fluoroquinolone. In April 2000, Sumitomo Dainippon Pharma agreed to comarket the oral formulation in Japan. In August of that year, Allergan in-licensed gatifloxacin from Kyorin, gaining development and commercialization rights to the drug in all territories except Japan, Korea, China and Taiwan. The India-based Lupin Pharmaceuticals signed an agreement in June 2004 with Allergan to promote the ophthalmic solution of gatifloxacin in the pediatric specialty area in the U.S. PediaMed Pharmaceuticals also holds rights to the drug. In 2009, Kyorin licensed the drug candidate to Senju in China.
Gatifloxacin is the common name for (±)-1-cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-7-(3-methyl-1-piperazinyl)-4-oxo-3-quinolinecarboxylic acid (1), one of the most important broad-spectrum antibacterial agents and a member of the fourth-generation fluoroquinolone family.(1)Fluoroquinolones inhibit the enzyme DNA gyrase (topoisomerase II), which is responsible for the supercoiling of the DNA double helix, preventing the replication and repair of bacterial DNA and RNA.(2) Gatifloxacin (1) reached the market in 1999 under the brand name Tequin for the treatment of respiratory tract infections. The drug is available as tablets and aqueous solutions for intravenous therapy as well as eye drop formulation (Zymar).
To date, there are several processes described for the preparation of gatifloxacin, which can be grouped into two main categories: direct substitution of the 7-position fluorine atom of 1-cyclopropyl-6,7-difluoro-1,4-dihydro-8-methoxy-4-oxo-3-quinolinecarboxylic acid (2) by 2-methylpiperazine (Scheme 1),(3-5) and through boron chelate-type intermediates to overcome the diminished reactivity induced by the 8-methoxy group, which uses as starting material the ethyl ester derivative 3 (Scheme 2).(6-9)
SCHEME1
Figure
SCHEME2
Figure
  1. 1.
    Mather, R.; Karenchak, L. M.; Romanowski, E. G.; Kowalski, R. P. Am. J. Ophthalmol.2002, 133 ( 4) 463

  2. 2.
    Corey, E. J.; Czakó, B.; Kürti, L. Molecules and Medicine; Wiley: NJ, 2007; p 135.

  3. 3.
    Masuzawa, K.; Suzue, S.; Hirai, K.; Ishizaki, T. 8-Alkoxyquinolonecarboxylic acid and salts thereof excellent in the selective toxicity and process of preparing the same EP 0 230 295 A3, 1987.

  4. 4.
    Niddam-Hildesheim, V.; Dolitzky, B.-Z.; Pilarsky, G.; Steribaum, G. Synthesis of Gatifloxacin WO 2004/069825 A1, 2004.

  5. 5.
    Ruzic, M; Relic, M; Tomsic, Z; Mirtek, M. Process for the preparation of Gatifloxacin and regeneration of degradation products WO 2006/004561 A1, 2006.

  6. 6.
    Iwata, M.; Kimura, T.; Fujiwara, Y.; Katsube, T. Quinoline-3-carboxylic acid derivatives, their preparation and use EP 0 241 206 A2, 1987.

  7. 7.
    Sanchez, J. P.; Gogliotti, R. D.; Domagala, J. M.; Garcheck, S. J.; Huband, M. D.; Sesnie,J. A.; Cohen, M. A.; Shapiro, M. A. J. Med. Chem. 1995, 38, 4478

  8. 8.
    Satyanarayana, C.; Ramanjaneyulu, G. S.; Kumar, I. V. S. Novel crystalline forms of Gatifloxacin WO 2005/009970 A1 2005.

  9. 9.
    Takagi, N.; Fubasami, H.; Matsukobo, H.; (6,7-Substituted-8-alkoxy-1-cyclopropyl-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid-O3,O4)bis(acyloxy-O)borates and the salts thereof, and methods for their manufacture EP 0 464 823 A1, 1991.

………………………….

WO 2005009970

http://www.google.com/patents/WO2005009970A1?cl=en

preparation of Gatifloxacin hemihydrate from Ethyl-1- Cyclopropyl-6, 7-difluoro-8-methoxy-4-oxo-l, 4-dihydro-3-quinoline carboxylate through boron difluoride chelate. Ethyl-1-cyclopropyl- 6, 7-difluoro-8-methoxy-4-oxo-l, 4-dihydro-3-quinoline carboxylate is reacted with aqueous hydrofluoroboric acid followed by condensation with 2-methyl piperazine in polar organic solvent resulting in an intermediate l-Cyclopropyl-7- (3-methyl piperazin-1- yl). -6-fluoro-8-methoxy-4-oxo-l, 4-dihydro-3-quinoline carboxylic acid boron difluoride chelate. This intermediate may be further hydrolyzed to yield Gatifloxacin. Gatifloxacin so obtained may needs purification to yield high purity product. However to obtain directly high purity Gatifloxacin it is desirable to isolate the intermediate by cooling to low temperatures . Treating with an alcohol or mixture of alcohols purifies this intermediate. The purified condensed chelate in aqueous ethanol on hydrolysis with triethylamine followed by crystallization in ethanol gives Gatifloxacin hemihydrate with high purity.

STAGE – I:

 

Figure imgf000006_0001

Ethyl l-cyclopropyl-6,7-difluoro-8-met oxy l-Cycloproρyl-6, 7-difluoro-8-methoxy -4-oxo-l, -dihydro-3-quinoline -4-oxo-l, 4-dihydro-3-quinoline carboxylate carboxylic acid boron difluoride chelate

STAGE – II :

 

Figure imgf000007_0001

l-Cycloprop l-7- ( 3-methylpiperazin-l-yl.

Figure imgf000007_0002

6-fluoro~8-methoxy-4-oxo-l , 4-dihydro-3- carboxylicacid borondifluoride chelate quinoline carboxylicacid borondifluoride chelate

STAGE -III :

 

Figure imgf000007_0003

l-Cyclopropyl-7- (3- ethylpiperaz.in-l-yl . GATIFLOXACIN

-6-fluoro-8-methoxy-4-oxo-l , 4-dihydro-3- quinoline carboxylicacid borondifluoride chelate

Example-I: Preparation of Gatifloxacin • with isolation of intermediate (boron difluoride chelate derivative)

Stage-1: Preparation of l-cyclopropyl-6, 7-di luoro-8-methoxy-4-oxo- 1, 4-dihydro-3-quinoline carboxylic acid boron difluoride chelate. Ethyl-l-cyclopropyl-6, 7-difluoro-8-methoxy-4-oxo-l, -dihydro-3- quinόline carboxylate (100g)is suspended in ,40%aq..hydrofluoroboric acid -(1000 ml). Temperature of • the reaction mass is raised and maintained at 95°C to 100°C for 5hrs followed by cooling to 30°C – 35°C. Water (400 ml) is added and maintained at 25°C – 30°C for 2hrs . Product is filtered, washed with water (500 ml) and dried at 40°C – 45°C to constant weight. Dry weight of the product: 101.6 g (Yield: 95.8 %)

Stage-2: Preparation of 1- Cyclopropyl-7- (3-methylpiperazin-l-yl) – 6-fluoro-8-methoxy-4-oxo-l, -dihydro-3-quinoline carboxylic acid boron difluoride chelate

100 g of Boron difluoride chelate derivative prepared as above in stage-1 is suspended in acetonitrile (800 ml) , to that 2-methyl piperazine (44.0 g, 1.5 mole equiv.) is added and mixed for 15 min to obtain a clear solution. The reaction mass is maintained at 30°C – 35°C for 12 hrs followed by cooling to -10°C to -5°C. The reaction mass is maintained at -10°C to -5°C for 1 hr. The product is filtered and dried at 45°C – 50°C to constant weight. Dry weight of the product: 116.0 g (Yield: 93.9 %) .

The condensed chelate (100 g) prepared as above is suspended in methanol (1500 ml), maintained at 40°C – 45°C for 30 min. The reaction mass is gradually cooled, maintained for 1 hr at -5°C to 0°C. The product is filtered, washed with methanol (50 ml) and dried at 45°C – 50°C to constant weight. Dry weight of the product: 80.0 g (Yield: 80.0 %)

Stage -3: Preparation of Gatifloxacin (Crude)

The pure condensed chelate (100.0 g) prepared as above in stage-2 is suspended in 20% aq. ethanol (1000 ml) , the temperature is raised and maintained at 75°C to 80°C for 2 hrs. The reaction mass is cooled, filtered to remove insolubles, distilled under vacuum to remove solvent. Fresh ethanol (200 ml) is added and solvent is removed under vacuum at temperature below 50°C. Ethanol (200 ml) is added to the residue and gradually cooled to -10°C to -5°C. The reaction mass is mixed at -10°C to -5°C for 1 hr and then filtered. The wet cake is washed with ethanol (25 ml) and dried at 45°C – 50°C to constant weight.

The dry weight of the Gatifloxacin is 83.3 g (Yield: 91.7 %)

Stage- 4: Purification of crude Gatifloxacin

Crude Gatifloxacin (100.0 g) prepared as above in stage-3 is suspended in methanol (4000 ml), the temperature is raised and maintained at 60°C to 65°C for 20 min. to get a clear solution. Activated carbon (5 g) is added, maintained for 30 min and the solution is filtered. The filtrate is concentrated to one third of its original volume under vacuum at temperature below 40°C. The reaction mass is gradually cooled and maintained at -10°C to -5°C for 2 hrs. The product is filtered, washed with methanol (50 ml) and dried at 45°C – 50°C to constant weight. The dry weight of the pure Gatifloxacin is 76.0 g (Yield: 76.0 %)

Example-II: Preparation of Gatifloxacin without isolation of intermediate (boron difluoride chelate derivative)

Stage-1: Preparation of l-cyclopropyl-6, 7-difluoro-8-methoxy-4- oxo-1, 4-dihydro-3-quinoline carboxylic acid boron difluoride chelate.

Ethyll-cyclopropyl-6, 7-difluoro-8-methoxy-4-oxo-l, 4-dihydro-3- quinoline carboxylate (lOOg) is suspended in 40% aq. hydrofluoroboric acid (1000 ml) . Temperature of the reaction mass is raised and maintained at 95°C to 100°C for 5 hrs followed by cooling to 30°C – 35°C. 400 ml DM water is added, maintained at 25°C – 30°C for 2hrs . The product is filtered, washed with DM water (500 ml) and dried at 40°C – 45°C to constant weight. The dry wt is 102.5 g (Yield: 96.6 %)

Stage – 2: Preparation of Gatifloxacin (Crude)

The boron difluoride chelate derivative (100 g) prepared as above in stage-1 is suspended in acetonitrile (800 ml) , 2-methyl piperazine (44 g, 1.5 mole equiv.) is added and mixed for 15 min to obtain a clear solution. The reaction mass is maintained at 30°C – 35°C for 12 hrs. Removed the solvent by vacuum distillation. 20% Aq. ethanol (1000 ml) is added, raised the temperature and maintained at 75°C to 80°C for 2 hrs. The reaction mass is cooled, filtered to remove insolubles. The filtrate is distilled under vacuum to remove solvent completely. Fresh ethanol (250 ml) is added and distilled under vacuum at temperature below 50°C. Fresh Ethanol (250 ml) is added to the residue and gradually cooled to -10°C to -5°C. The reaction mass is maintained at -10°C to -5°C for 1 hr and filtered. The wet cake is washed with ethanol (30 ml) and dried at 45°C – 50°C to constant weight.

The dry weight of the Gatifloxacin is 73.5 g (Yield: 65.4 %)

Stage -3: Purification of crude Gatifloxacin

Crude Gatifloxacin (80.0 g) prepared as above in stage-2 is suspended in methanol (2000 ml) , the temperature is raised and maintained at 60°C to 65°C for 20 min. to get a clear solution. The reaction mixture is filtered. The filtrate is gradually cooled and maintained at -10°C to -5°C for 2 hrs. The product is filtered, washed with methanol (50 ml) and dried at 45°C – 50°C to constant weight.

The dry weight of the pure Gatifloxacin is 56.0 g (Yield: 70.0 %)

……………………….

WO 2005047260

http://www.google.co.in/patents/WO2005047260A1?cl=en

Gatifloxacin is the international common name of l-cyclopropyl-6-fluoro-l, 4-dihydro-8-methoxy- 1- (3-methyl-l-piperazinyl) -4-oxo-3-guinolin-carboxylic acid of formula (I) , with application in medicine and known for its antibiotic activity:

 

Figure imgf000002_0001

European patent application EP-A-230295 discloses a process for obtaining gatifloxacin that consists on the reaction of compound (II) with 2-

 

Figure imgf000002_0002

In this process the gatifloxacin is isolated in the form of a hemihydrate after a laborious process of column chromatography and recrystallisation in methanol, which contributes towards making the final yield lower than 20% by weight. Moreover, in said process an undesired by-product is formed, resulting from demethylation at position 8 of the ring. European patent application EP-A-241206 discloses a process for preparing gatifloxacin, whose final steps are as follows:

 

Figure imgf000003_0001

(III) H ft N Me H DMSO

Gatifloxacin (I)

Figure imgf000003_0002

(IV) This process uses the intermediate compound (III) , which has been prepared and isolated in a separate operation, while the intermediate compound (IV) is also isolated before proceeding to its conversion into gatifloxacin by treatment with ethanol in the presence of triethylamine. The overall yield from these three steps is lower than 40%. These disadvantages — a synthesis involving several steps, low yields, and the need to isolate the intermediate products — hinder the production of gatifloxacin on an industrial scale. There is therefore a need to provide a process for preparing gatifloxacin with a good chemical yield, without the need to isolate the intermediate compounds and that substantially avoids demethylation in position 8 of the ring. The processes termed in English “one pot” are characterised in that the synthesis is carried out in the same reaction vessel, without isolating the intermediate compounds, and by means of successive addition of the reacting compounds. The authors of the present invention have discovered a simplified process for preparing gatifloxacin which does not require isolation of the intermediate compounds .

 

Example 1: Preparing gatifloxacin from compound (II) 10 g (0.0339 moles, 1 equivalent) of compound

(II) is placed in a flask, 30 ml of acetonitryl (3 volumes) is added and this is heated to a temperature of 76-80° C.

Figure imgf000004_0001

Once reflux has been attained, and being the temperature maintained, 3.28 g (0.0203 moles, 0.6 equivalents) of hexamethyldisilazane (HMDS) is added with a compensated adding funnel. Once addition is completed, the reaction is maintained with stirring for 1 hour at a temperature of 76-80° C. Once this period has elapsed, the reaction mixture is cooled to a temperature ranging between 0 and 15° C, and 5.78 g (0.0407 moles, 1.2 equivalents) of boron trifluoride ethyletherate is added while keeping the temperature below 15° C. Once addition is completed, the temperature is allowed to rise to 15- 25° C and it is kept under these conditions for approximately 2 hours. The pH of the mixture is then adjusted to an approximate value of 9 with triethylamine (approximately 2 ml) . To the resulting suspension is added a solution of 10.19 g (0.1017 moles, 3 equivalents) of 2-methylpiperazine in 28 ml of acetonitryl, while maintaining the temperature between 15 and 25° C. The resulting amber solution is kept with stirring under these conditions for approximately 3 hours . Once the reaction has been completed, the solution is distilled at low pressure until a stirrable paste is obtained. At this point 50 ml of methanol is added, the resulting suspension is raised to a temperature of 63-67° C and is kept under these conditions for approximately 5 hours . Once the reaction has been completed, the mixture is cooled to a temperature of 25-35° C in a water bath, and then at a temperature of 0-5° C in a water/ice bath for a further 1 hour. The resulting precipitate is filtered, washed with cold methanol (2 x 10 ml) and dried at 40° C in a vacuum oven to constant weight. 10.70 g of crude gatifloxacin is obtained, having a water content of 2.95% by weight. The yield of the process is 81.8%.

The crude product is crystallised in methanol by dissolving 20 g of crude gatifloxacin in 1 1 of methanol (50 volumes) at a temperature of 63-67° C. Once all the product has been dissolved, the solution is left to cool to a temperature of 30-40° C, and then to a temperature of 0-5° C in a water/ice bath, maintaining it under these conditions for 1 hour. The resulting suspension is filtered and the solid retained is washed with 20 ml (1 volume) of cold methanol. The solid obtained is dried at 40° C in a vacuum oven to provide 18.65 g of gatifloxacin with a water content of 2.36% by weight.

The overall yield from the compound (II) is 77.7%, with a purity exceeding 99.8% as determined by HPLC chromatography. The content of by-product resulting from demethylation in position 8 of the ring is lower than 0.1% as determined by HPLC chromatography.

Gatifloxacin ball-and-stick.png
Systematic (IUPAC) name
1-cyclopropyl-6-fluoro- 8-methoxy-7-(3-methylpiperazin-1-yl)- 4-oxo-quinoline-3-carboxylic acid
Clinical data
Trade names Zymar
AHFS/Drugs.com monograph
MedlinePlus a605012
  • ℞ (Prescription only)
Oral (discontinued),
Intravenous(discontinued)
ophthalmic
Pharmacokinetic data
Protein binding 20%
Half-life 7 to 14 hours
Identifiers
112811-59-3 Yes
J01MA16 S01AE06
PubChem CID: 5379
DrugBank DB01044 Yes
ChemSpider 5186 Yes
UNII 81485Y3A9A Yes
KEGG D08011 Yes
ChEBI CHEBI:5280 Yes
ChEMBL CHEMBL31 Yes
NIAID ChemDB 044913
Chemical data
Formula C19H22FN3O4
375.394 g/mol

PAPER

Abstract Image

An improved process to obtain gatifloxacin (1) through use of boron chelate intermediates has been developed. The methodology involves an initial activation step which accelerates the formation of the first chelate under low-temperature conditions and prevents demethylation of the starting material. To increase the overall yield and to avoid the isolation and manipulation of the resulting intermediates, the process has been designed to be carried out in one pot. As a result, we present here an easy, scaleable and substantially impurity-free process to obtain gatifloxacin (1) in high yield.

A High-Throughput Impurity-Free Process for Gatifloxacin

Department of Research & Development, Química Sintética S.A., c/ Dulcinea s/n, 28805 Alcalá de Henares, and Department of Organic Chemistry, University of Alcalá, 28871 Madrid, Alcalá de Henares, Spain
Org. Process Res. Dev., 2008, 12 (5), pp 900–903
DOI: 10.1021/op800042a
gatifloxacin (1) as white crystals. Yield 32.3 kg, (93%); purity by HPLC 99.87%; Assay by HPLC 100.8%; mp 167−168 °C(18) (Lit. (J. Med. Chem. 1995, 38, 4478)159−162 °C).
18

DSC analysis showed two endothermic peaks at 166.2 °C (T onset = 164.3 °C) and 190.0 °C (T onset = 188.2 °C) and an exothermic one at 168.1 °C. The shape of this DSC curve is characteristic of a monotropic transition between crystalline forms

Water content by Karl Fischer 3.0%(19) MS m/z 376 (M+ + H);
19

Although there are several hydrates described for gatifloxacin such as, among others, the hemimydrate, sesquihydrate, and pentahydrate(Raghavan, K. S.; Ranadive, S. A.;Gougoutas, J. Z.; Dimarco, J. D.; Parker, W. L.; Dovich, M.; Neuman, A.Gatifloxacin pentahydrate. WO 2002/22126 A1, 2002) , the Gatifloxacin obtained by the present procedure does not seem to form a stoichometric hydrate, but instead it retains moisture.

Thus, the product is usually obtained with a Karl-Fischer value below 1% after drying, but it can absorb moisture until a final content of about 3%. This water content can vary between 2.0% and 3.5%, depending on the relative humidity of the environment. DSC analysis revealed a broad endothermic signal with minimum at 76 °C, while TGA analysis showed that the product loses all the water below 80 °C.

No loss of weight is registered when the product melts, and the weight is constant until the decomposition of the material at about 200 °C. On the basis of these results, it can be said that the water content of the gatifloxacin obtained by the present process is retained moisture instead of water belonging to the lattice. The shape of the derivative of the weight curve at the beginning of the analysis shows that the sample has already lost part of the moisture when the register starts. This is probably due to the sample starting to lose weight when makes contact with the dry atmosphere of the TGA oven that could explain the different values obtained for water content of the analyzed sample by TGA (1.90%) and Karl-Fischer (2.64%) methods.

 1H NMR (DMSO-d6) δ 0.97 (d, J = 6.1 Hz, 3H), 1.04 (m, 2H), 1.15 (m, 2H), 2.75−2.94 (m, 4H) 3.14 (m, 1H), 3.30 (m, 2H), 3.74 (s, 3H), 4.15 (m, 1H), 7.70 (d, JH−F = 12.2 Hz, 1H), 8.67 (s, 1H). 
13C NMR (DMSO-d6) δ 8.40, 8.42, 18.66, 40.28, 45.46, 50.17, 50.29 (d, JC−F = 3.44 Hz), 57.36 (d, JC−F = 3.74 Hz), 62.15, 106.0 (d, JC−F = 22.7 Hz), 106.04, 120.05 (d, JC−F = 8.6 Hz), 133.6 (d, JC−F = 1.1 Hz), 138.9 (d, JC−F = 11.9 Hz), 145.2 (d, JC−F = 5.87 Hz), 149.88, 155.06 (d, JC−F = 249.2 Hz), 165.56, 175.56 (d, JC−F = 3.3 Hz).
 19F NMR (DMSO-d6) δ −120.4 (d, J = 12.2 Hz).
Anal. Calcd for C19H22N3O4F + 3.0% H2O; C, 58.95; H, 6.07; N, 10.85. Found: C, 58.90; H, 5.82; N, 10.90.

Side-effects and removal from the market

Canadian study published in the New England Journal of Medicine in March 2006 claims Tequin can have significant side effectsincluding dysglycemia.[2] An editorial by Dr. Jerry Gurwitz in the same issue called for the Food and Drug Administration (FDA) to consider giving Tequin a black box warning.[3] This editorial followed distribution of a letter dated February 15 by Bristol-Myers Squibb to health care providers indicating action taken with the FDA to strengthen warnings for the medication.[4] Subsequently it was reported on May 1, 2006 that Bristol-Myers Squibb would stop manufacture of Tequin, end sales of the drug after existing stockpiles were exhausted, and return all rights to Kyorin.[5]

Union Health and Family Welfare Ministry of India on 18 March 2011 banned the manufacture, sale and distribution of Gatifloxacin as it caused certain adverse side effects[6]

Contraindications

Diabetes[7]

Availability

Gatifloxacin is currently available only in the US and Canada as an ophthalmic solution.

In China it is sold in tablet as well as in eye drop formulations.

Ophthalmic anti-infectives are generally well tolerated. The concentration of the drug observed following oral administration of 400 mg gatifloxacin systemically is approximately 800 times higher than that of the 0.5% Gatifloxacin eye drop. Given as an eye drop, Gatifloxacin Ophthalmic Solution 0.3% & 0.5% cause very low systemic exposures. Therefore, the systemic exposures resulting from the gatifloxacin ophthalmic solution are not likely to pose any risk for systemic toxicities.

  • The reaction of 1-bromo-2,4,5-trifluoro-3-methoxybenzene (I) with CuCN and N-methyl-2-pyrrolidone at 150 C gives 2,4,5-trifluoro-3-methoxybenzonitrile (II), which by treatment with concentrated H2SO4 yields the benzamide (III) The hydrolysis of (III) with H2SO4 -. water at 110 C affords 2,4,5-trifluoro-2-methoxybenzoic acid (IV), which by reaction with SOCl2 is converted into the acyl chloride (V). The condensation of (V) with diethyl malonate by means of magnesium ethoxide in toluene affords diethyl 2- (2,4,5-trifluoro-3-methoxybenzoyl) malonate (VI), which by treatment with p-toluenesulfonic acid in refluxing water gives ethyl 2- (2,4,5-trifluoro-3-methoxybenzoyl) acetate (VII). The condensation of (VII) with triethyl orthoformate in refluxing acetic anhydride yields 3-ethoxy -2- (2,4,5-trifluoro-3-methoxybenzoyl) acrylic acid ethyl ester (VIII), which is treated with cyclopropylamine (IX) to afford the corresponding cyclopropylamino derivative (X). The cyclization of (X) by means of NaF in refluxing DMF gives 1-cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid ethyl ester (XI), which is hydrolyzed with H2SO4 in acetic acid to yield the corresponding free acid (XII). Finally, this compound is condensed with 2-methylpiperazine (XIII) in hot DMSO.

 

Gatifloxacin
Title: Gatifloxacin
CAS Registry Number: 112811-59-3
CAS Name: 1-Cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-7-(3-methyl-1-piperazinyl)-4-oxo-3-quinolinecarboxylic acid
Trademarks: Tequin (BMS); Zymar (Allergan)
Molecular Formula: C19H22FN3O4
Molecular Weight: 375.39
Percent Composition: C 60.79%, H 5.91%, F 5.06%, N 11.19%, O 17.05%
Literature References: Fluorinated quinolone antibacterial. Prepn: K. Masuzawa et al., EP 230295eidem, US 4980470 (1987, 1990 both to Kyorin); J. P. Sanchez et al., J. Med. Chem. 38, 4478 (1995); of the sesquihydrate: T. Matsumoto et al., US5880283 (1999 to Kyorin). In vitro antibacterial activity: A. Bauernfeind, J. Antimicrob. Chemother. 40, 639 (1997); H. Fukuda et al., Antimicrob. Agents Chemother. 42, 1917 (1998). Clinical pharmacokinetics: M. Nakashima et al., ibid. 39, 2635 (1995). Clinical study in urinary tract infection: H. Nito, 10th Mediterranean Congr. Chemother. 1996, 327; in respiratory tract infection: S. Sethi, Expert Opin. Pharmacother. 4, 1847 (2003).
Properties: Pale yellow prisms from methanol as hemihydrate, mp 162°.
Melting point: mp 162°
 
Derivative Type: Sesquihydrate
CAS Registry Number: 180200-66-2
Manufacturers’ Codes: AM-1155
Molecular Formula: C19H22FN3O4.1½H2O
Molecular Weight: 384.40
Percent Composition: C 59.37%, H 6.03%, F 4.94%, N 10.93%, O 18.73%
Therap-Cat: Antibacterial.
Keywords: Antibacterial (Synthetic); Quinolones and Analogs

References

  1.  Burka JM, Bower KS, Vanroekel RC, Stutzman RD, Kuzmowych CP, Howard RS (July 2005). “The effect of fourth-generation fluoroquinolones gatifloxacin and moxifloxacin on epithelial healing following photorefractive keratectomy”Am. J. Ophthalmol. 140 (1): 83–7. doi:10.1016/j.ajo.2005.02.037.PMID 15953577.
  2.  Park-Wyllie, Laura Y.; David N. Juurlink; Alexander Kopp; Baiju R. Shah; Therese A. Stukel; Carmine Stumpo; Linda Dresser; Donald E. Low; Muhammad M. Mamdani (March 2006).“Outpatient Gatifloxacin Therapy and Dysglycemia in Older Adults”The New England Journal of Medicine 354 (13): 1352–1361. doi:10.1056/NEJMoa055191PMID 16510739. Retrieved 2006-05-01. Note: publication date 30 March; available on-line 1 March
  3.  Gurwitz, Jerry H. (March 2006). “Serious Adverse Drug Effects — Seeing the Trees through the Forest”The New England Journal of Medicine 354 (13): 1413–1415.doi:10.1056/NEJMe068051PMID 16510740. Retrieved2006-05-01.
  4.  Lewis-Hall, Freda (February 15, 2006). “Dear Healthcare Provider:” (PDF). Bristol-Myers Squibb. Retrieved May 1, 2006.
  5.  Schmid, Randolph E. (May 1, 2006). “Drug Company Taking Tequin Off Market”Associated Press. Archived from the original on November 25, 2007. Retrieved 2006-05-01.[dead link]
  6.  “Two drugs banned”The Hindu (Chennai, India). 19 March 2011.
  7.  Peggy Peck (2 May 2006). “Bristol-Myers Squibb Hangs No Sale Sign on Tequin”. Med Page Today. Retrieved 24 February2009.

 

EP0610958A2 * 20 Jul 1989 17 Aug 1994 Ube Industries, Ltd. Intermediates in the preparation of 4-oxoquinoline-3-carboxylic acid derivatives
ES2077490A1 * Title not available
Citing Patent Filing date Publication date Applicant Title
WO2008126384A1 31 Mar 2008 23 Oct 2008 Daiichi Sankyo Co Ltd Method for producing quinolone carboxylic acid derivative
CN101659654B 28 Aug 2008 6 Nov 2013 四川科伦药物研究有限公司 2-Methylpiperazine fluoroquinolone compound and preparation method and application thereof
CN102351843A * 18 Aug 2011 15 Feb 2012 张家口市格瑞高新技术有限公司 Synthesis method of 2-methyl piperazine lomefloxacin
EP1832587A1 * 2 Mar 2007 12 Sep 2007 Quimica Sintetica, S.A. Method for preparing moxifloxacin and moxifloxacin hydrochloride
US7365201 2 Mar 2006 29 Apr 2008 Apotex Pharmachem Inc. Process for the preparation of the boron difluoride chelate of quinolone-3-carboxylic acid
US7875722 30 Sep 2009 25 Jan 2011 Daiichi Sankyo Company, Limited Method for producing quinolone carboxylic acid derivative
EP0464823A1 * Jul 4, 1991 Jan 8, 1992 Kyorin Pharmaceutical Co., Ltd. (6,7-Substituted-8-alkoxy-1-cyclopropyl-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid-O3,O4)bis(acyloxy-O)borates and the salts thereof, and methods for their manufacture
US4997943 * Mar 31, 1987 Mar 5, 1991 Sankyo Company Limited Quinoline-3-carboxylic acid derivatives
Citing Patent Filing date Publication date Applicant Title
CN101659654B Aug 28, 2008 Nov 6, 2013 四川科伦药物研究有限公司 2-Methylpiperazine fluoroquinolone compound and preparation method and application thereof
CN102351843A * Aug 18, 2011 Feb 15, 2012 张家口市格瑞高新技术有限公司 Synthesis method of 2-methyl piperazine lomefloxacin
* Cited by examiner

 

TAKE A TOUR

 

 

TAKE A TOUR

 

Amritsar, punjab, India

  1. Amritsar – Wikipedia, the free encyclopedia

    https://en.wikipedia.org/?title=Amritsar

    Amritsar is one of the largest cities of the Punjab state in India. The city origin lies in the village of Tung, and was named after the lake founded by the fourth Sikh  …

    Map of amritsar
    Punjab
    GOLDEN TEMPLE
    .
    Tandoori chicken at Surjit Food Plaza. amritsar

    Bullet marks on the walls of the park premises

    The Jallianwalla Bagh in 1919, months after the massacre

    Mealtime at the Golden Temple Amritsar

     

    Golden Temple – Harmandir Sahib: Free food for everyone

    Sri Guru Ram Dass Jee International Airport in Amritsar

    Amritsar – Wagah Border – Street food stall | Explore bernic… |

    Charles W. BartlettAmritsar (The Lake by the Golden Temple) 1920

    tandoori chicken

    • Golden Temple

    • Maharaja Ranjit Singh’s Ram Bagh Gardens

    • Golden Temple

    • Durgiana Temple

    • The holy water

    • Jallianwala Bagh

    • Jallianwala Bagh

    • The holy water

    • Golden Temple

    • Golden Temple

    • Sikh Gurdwara

    • The holy water

    Night view of the Harmandir Sahib

    Night view of the Harmandir Sahib
    ///////////
Share

Spray drying

 drugs, GENERIC, SYNTHESIS  Comments Off on Spray drying
Jun 042015
 

Laboratory-scale spray dryer.
A=Solution or suspension to be dried in, B=Atomization gas in, 1= Drying gas in, 2=Heating of drying gas, 3=Spraying of solution or suspension, 4=Drying chamber, 5=Part between drying chamber and cyclone, 6=Cyclone, 7=Drying gas is taken away, 8=Collection vessel of product, arrows mean that this is co-current lab-spraydryer

Spray drying is a method of producing a dry powder from a liquid or slurry by rapidly drying with a hot gas. This is the preferred method of drying of many thermally-sensitive materials such as foods and pharmaceuticals. A consistent particle size distribution is a reason for spray drying some industrial products such as catalysts. Air is the heated drying medium; however, if the liquid is a flammable solvent such as ethanol or the product is oxygen-sensitive then nitrogen is used.[1]

All spray dryers use some type of atomizer or spray nozzle to disperse the liquid or slurry into a controlled drop size spray. The most common of these are rotary disks and single-fluid high pressure swirl nozzles. Atomizer wheels are known to provide broader particle size distribution, but both methods allow for consistent distribution of particle size.[2] Alternatively, for some applications two-fluid or ultrasonic nozzles are used. Depending on the process needs, drop sizes from 10 to 500 µm can be achieved with the appropriate choices. The most common applications are in the 100 to 200 µm diameter range. The dry powder is often free-flowing.[3]

The most common spray dryers are called single effect as there is only one drying air on the top of the drying chamber (see n°4 on the scheme). In most cases the air is blown in co-current of the sprayed liquid. The powders obtained with such type of dryers are fine with a lot of dusts and a poor flowability. In order to reduce the dusts and increase the flowability of the powders, there is since over 20 years a new generation of spray dryers called multiple effect spray dryers. Instead of drying the liquid in one stage, the drying is done through two steps: one at the top (as per single effect) and one for an integrated static bed at the bottom of the chamber. The integration of this fluidized bed allows, by fluidizing the powder inside a humid atmosphere, to agglomerate the fine particles and to obtain granules having commonly a medium particle size within a range of 100 to 300 µm. Because of this large particle size, these powders are free-flowing.

The fine powders generated by the first stage drying can be recycled in continuous flow either at the top of the chamber (around the sprayed liquid) or at the bottom inside the integrated fluidized bed. The drying of the powder can be finalized on an external vibrating fluidized bed.

The hot drying gas can be passed as a co-current or counter-current flow to the atomiser direction. The co-current flow enables the particles to have a lower residence time within the system and the particle separator (typically a cyclone device) operates more efficiently. The counter-current flow method enables a greater residence time of the particles in the chamber and usually is paired with a fluidized bed system.

Alternatives to spray dryers are:[4]

  1. Freeze dryer: a more-expensive batch process for products that degrade in spray drying. Dry product is not free-flowing.
  2. Drum dryer: a less-expensive continuous process for low-value products; creates flakes instead of free-flowing powder.
  3. Pulse combustion dryer: A less-expensive continuous process that can handle higher viscosities and solids loading than a spray dryer, and that sometimes gives a freeze-dry quality powder that is free-flowing.

Spray dryer

Spray drying nozzles.

Schematic illustration of spray drying process.

A spray dryer takes a liquid stream and separates the solute or suspension as a solid and the solvent into a vapor. The solid is usually collected in a drum or cyclone. The liquid input stream is sprayed through a nozzle into a hot vapor stream and vaporised. Solids form as moisture quickly leaves the droplets. A nozzle is usually used to make the droplets as small as possible, maximising heat transfer and the rate of water vaporisation. Droplet sizes can range from 20 to 180 μm depending on the nozzle.[3] There are two main types of nozzles: high pressure single fluid nozzle (50 to 300 bars) and two-fluid nozzles: one fluid is the liquid to dry and the second is compressed gas (generally air at 1 to 7 bars).

Spray dryers can dry a product very quickly compared to other methods of drying. They also turn a solution, or slurry into a dried powder in a single step, which can be advantageous for profit maximization and process simplification.

 

The Spray Drying Process

The spray drying process is older than might commonly be imagined.  Earliest descriptions date from 1860 with the first patented design recorded in 1872. The basic idea of spray drying is the production of highly dispersed powders from a fluid feed by evaporating the solvent. This is achieved by mixing a heated gas with an atomized (sprayed) fluid of high surface-to-mass ratio droplets, ideally of equal size, within a vessel (drying chamber), causing the solvent to evaporate uniformly and quickly through direct contact.
Spray drying can be used in a wide range of applications where the production of a free-flowing powder is required. This method of dehydration has become the most successful one in the following areas:

  • Pharmaceuticals
  • Bone and tooth amalgams
  • Beverages
  • Flavours, colourings and plant extracts
  • Milk and egg products
  • Plastics, polymers and resins
  • Soaps and detergents
  • Textiles and many more

Almost all other methods of drying, including use of ovens, freeze dryers or rotary evaporators, produce a mass of material requiring further processing (e.g. grinding and filtering) therefore, producing particles of irregular size and shape. Spray drying on the other hand, offers a very flexible control over powder particle properties such as density, size, flow characteristics and moisture content.

 

Spray drying dia

Design and Control

The challenges facing both designers and users are to increase production, improve powder quality and reduce costs. This requires an understanding of the process and a robust control implementation.

 

Spray drying consists of the following phases:

 

  • Feed preparation: This can be a homogenous, pumpable and free from impurities solution, suspension or paste.
  • Atomization (transforming the feed into droplets): Most critical step in the process. The degree of atomization controls the drying rate and therefore the dryer size. The most commonly used atomization techniques are:

1. Pressure nozzle atomization: Spray created by forcing the fluid through an orifice. This is an energy efficient method which also offers the narrowest particle size distribution.
2. Two-fluid nozzle atomization: Spray created by mixing the feed with a compressed gas. Least energy efficient method. Useful for making extremely fine particles.
3. Centrifugal atomization: Spray created by passing the feed through or across a rotating disk. Most resistant to wear and can generally be run for longer periods of time.

  • Drying: A constant rate phase ensures moisture evaporates rapidly from the surface of the particle. This is followed by a falling rate period where the drying is controlled by diffusion of water to the surface of the particle.
  • Separation of powder from moist gas: To be carried out in an economical (e.g. recycling the drying medium) and pollutant-free manner. Fine particles are generally removed with cyclones, bag filters, precipitators or scrubbers.
  • Cooling and packaging.

 

A control system must therefore provide flexibility in the way in which accurate and repeatable control of the spray drying is achieved and will include the following features:

 

  • Precise loop control with setpoint profile programming
  • Recipe Management System for easy parameterisation
  • Sequential control for complex control strategies
  • Secure collection of on-line data from the system for analysis and evidence
  • Local operator display with clear graphics and controlled access to parameters

Micro-encapsulation

Spray drying often is used as an encapsulation technique by the food and other industries. A substance to be encapsulated (the load) and an amphipathic carrier (usually some sort of modified starch) are homogenized as a suspension in water (the slurry). The slurry is then fed into a spray drier, usually a tower heated to temperatures well over the boiling point of water.

As the slurry enters the tower, it is atomized. Partly because of the high surface tension of water and partly because of thehydrophobic/hydrophilic interactions between the amphipathic carrier, the water, and the load, the atomized slurry forms micelles. The small size of the drops (averaging 100 micrometers in diameter) results in a relatively large surface area which dries quickly. As the water dries, the carrier forms a hardened shell around the load.[5]

Load loss is usually a function of molecular weight. That is, lighter molecules tend to boil off in larger quantities at the processing temperatures. Loss is minimized industrially by spraying into taller towers. A larger volume of air has a lower average humidity as the process proceeds. By the osmosis principle, water will be encouraged by its difference in fugacities in the vapor and liquid phases to leave the micelles and enter the air. Therefore, the same percentage of water can be dried out of the particles at lower temperatures if larger towers are used. Alternatively, the slurry can be sprayed into a partial vacuum. Since the boiling point of a solvent is the temperature at which the vapor pressure of the solvent is equal to the ambient pressure, reducing pressure in the tower has the effect of lowering the boiling point of the solvent.

The application of the spray drying encapsulation technique is to prepare “dehydrated” powders of substances which do not have any water to dehydrate. For example, instant drink mixes are spray dries of the various chemicals which make up the beverage. The technique was once used to remove water from food products; for instance, in the preparation of dehydrated milk. Because the milk was not being encapsulated and because spray drying causes thermal degradation, milk dehydration and similar processes have been replaced by other dehydration techniques. Skim milk powders are still widely produced using spray drying technology around the world, typically at high solids concentration for maximum drying efficiency. Thermal degradation of products can be overcome by using lower operating temperatures and larger chamber sizes for increased residence times.[6]

Recent research is now suggesting that the use of spray-drying techniques may be an alternative method for crystallization of amorphous powders during the drying process since the temperature effects on the amorphous powders may be significant depending on drying residence times.[7][8]

Spray drying applications

Food: milk powder, coffee, tea, eggs, cereal, spices, flavorings, starch and starch derivatives, vitamins, enzymes, stevia, colourings, etc.

Pharmaceutical: antibiotics, medical ingredients, additives

Industrial: paint pigments, ceramic materials, catalyst supports, microalgae

Nano spray dryer

The nano spray dryer offers new possibilities in the field of spray drying. It allows to produce particles in the range of 300 nm to 5 μm with a narrow size distribution. High yields are produced up to 90% and the minimal sample amount is 1 mL.

 

Pharmaceutical Spray drying is a very fast method of drying due to the very large surface area created by the atomization of the liquid feed. As a consequence, high heat transfer coefficients are generated and the fast stabilisation of the feed at moderate temperatures makes this method very attractive for heat sensitive materials.

Spray drying provides unprecedented particle control and allows previously unattainable delivery methods and molecular characteristics. These advantages allow exploration into employing previously unattainable delivery methods and molecular characteristics.

Five things you might not know about spray drying

  1. Spray drying is suitable for heat sensitive materials
    Spray drying is already used for the processing of heat sensitive materials (e.g. proteins, peptides and polymers with low Tg temperatures) on an industrial scale. Evaporation from the spray droplets starts immediately after contact with the hot process gas. Since the thermal energy is consumed by evaporation, the droplet temperature is kept at a level where no harm is caused to the product.
  2. Spray drying turns liquid into particles within seconds
    The large surface of the droplets provides near instantaneous evaporation, making it possible to produce particles with a crystalline or amorphous structure. The particle morphology is determined by the operating parameters and excipients added to the feed stock.
  3. Spray drying is relatively easy to replicate on a commercial scale
    GEA Niro has been producing industrial scale spray drying plants for well over half a century. Our process know-how, products and exceptional facilities put us in a unique position to advise and demonstrate how products and processes will behave on a large scale.
  4. Spray drying is a robust process
    Spray drying is a continuous process. Once the set points are established, all critical process parameters are kept constant throughout the batch. Information for the batch record can be monitored or logged, depending on the system selected.
  5. Spray drying can be effectively validated
    The precise control of all critical process parameters in spray drying provides a high degree of assurance that the process consistently produces a product that meets set specifi cations.

The spray drying process

Spray drying is a very fast method of drying due to the very large surface area created by the atomization of the liquid feed and high heat transfer coefficients generated. The short drying time, and consequently fast stabilisation of feed material at moderate temperatures, means spray drying is also suitable for heat-sensitive materials.

As a technique, spray drying consists of four basic stages:

  1. Atomization: A liquid feed stock is atomized into droplets by means of a nozzle or rotary atomizer. Nozzles use pressure or compressed gas to atomize the feed while rotary atomizers employ an atomizer wheel rotating at high speed.
  2. Drying: Hot process gas (air or nitrogen) is brought into contact with the atomized feed guided by a gas disperser, and evaporation begins. The balance between temperature, flow rate and droplet size controls the drying process.
  3. Particle formation: As the liquid rapidly evaporates from the droplet surface, a solid particle forms and falls to the bottom of the drying chamber.
  4. Recovery: The powder is recovered from the exhaust gas using a cyclone or a bag filter. The whole process generally takes no more than a few seconds.

 

References

  1.  A. S. Mujumdar (2007). Handbook of industrial drying. CRC Press. p. 710. ISBN 1-57444-668-1.
  2.  http://www.elantechnology.com/spray-drying/
  3.  Walter R. Niessen (2002). Combustion and incineration processes. CRC Press. p. 588. ISBN 0-8247-0629-3.
  4.  Onwulata p.66
  5.  Ajay Kumar (2009). Bioseparation Engineering. I. K. International. p. 179. ISBN 93-8002-608-0.
  6. Onwulata pp.389–430
  7.  Onwulata p.268
  8.  Chiou, D.; Langrish, T. A. G. (2007). “Crystallization of Amorphous Components in Spray-Dried Powders”. Drying Technology 25: 1427. doi:10.1080/07373930701536718.

Bibliography

Further reading

External links

TAKE A TOUR
TAKE A TOUR
Ahmednagar,  Maharashtra, India
////////////
Share

KETO ENOL TAUTOMERISM AND NMR

 spectroscopy, Uncategorized  Comments Off on KETO ENOL TAUTOMERISM AND NMR
Jun 032015
 

.

 

H Nmr Spectrum | Apk Mod Game

www.apkmodgame.net

Shows a method for getting all the useful information out of a proton nmr spectrum and using it to piece together the identity of an unknown molecule.
A Partial NMR Spectrum of 2,4-Pentanedione

 

 

 

 

 

 

 

Patent EP0922715B1 – Stimuli-responsive polymer utilizing keto …

Carbonyl compounds (aldehydes, ketones, carboxylic esters, carboxylic amides) react aselectrophiles at the sp2 hybridized carbon atoms and as nucleophiles if they contain an H-atom in the α-position relative to their C=O or C=N bonds. This is because this H is acidic and it can be removed by a base leaving behind an electron pair for nucleophilic attacks.

For most compounds in organic chemistry all the molecules have the same structure – even if this structure cannot satisfactory represented by a Lewis formula – but for many compounds there is a mixture of two or more structurally distinct compounds that are in rapid equilibrium. This phenomenon is called tautomerism.

Tautomerism is the phenomenon that occurs in any reaction that simply involves the intramolecular transfer of a proton. An equilibrium is established between the two tautomers (structurally distinct compounds) and there is a rapid shift back and forth between the distinct compounds.

A very common form of tautomerism is that between a carbonyl compound containing an αhydrogen and its enol form (Fig. I.1).

Fig. I.1: A keto-enol reaction
Fig. I.1: A keto-enol reaction

 

An enol is exactly what the name implies: an ene-ol. It has a C=C double bond (diene) and an OH group (alcohol) joined directly to it.

Notice that in the above reaction as in any keto-enol reaction there is no change in pH since a proton is lost from carbon and gained on oxygen. The reaction is known as enolization as it is the conversion of a carbonyl compound into its enol.

Notice also that in the above reaction the product is almost the same as the starting material since the only change is the transfer of one proton and the shift of the double bond.

In simple cases (R2 = H, alkyl, OR, etc.) the equilibrium of the keto-enol reaction lies well to the left (keto structure) (Table I.1). The reason can be seen by examining the bond energies in Table I.2.

 

Compound

Enol Content, %

Acetone

6 * 10-7

PhCOCH3

1.1 * 10-6

CH3CHO

6 * 10-5

Cyclohexanone

4 * 10-5

Ph2CHCHO

9.1

PhCOCH2COCH3

89.2

Table I.1: The enol content of some carbonyl compounds

 

If keto-enol reactions are common for aldehydes and ketones why don’t simple aldehydes and ketones exist as enols?

IR and NMR Spectra of carbonyl compounds show no signs of enols. The equilibrium lies well over towards the keto form (the equilibrium constant k for cyclohexanone is about 10-5).

 

Bond (Energy, kJ/mol)

Sum ( kJ/mol)

keto form

C-H (413)

C-C (350)

C=O (740)

1503

enol form

C=C (620)

C-O (367)

O-H (462)

1449

Table I.2: Bond energies in the keto and in the enol form. The keto form is thermodynamically more stable than the enol form by approximately 50 kJ/mol

The approximate sum of the bond energies in the keto form is 1503 kJ/mol while in the enol form 1449. Therefore, the keto form is thermodynamically more stable than the enol form by approximately 50 kJ/mol.

In most cases, enol forms cannot be isolated since they are less stable and are formed in minute quantities. However, there are some exceptions and in certain cases a larger amount of the enol form is present and it can be even the predominant species:

  • Molecules in which the enolic double bond is in conjugation with another double bond (cases are shown in Table I.1 like Ph2CHCHO and PhCOCH2COCH3)
  • Molecules that contain two or more bulky aryl groups (Fig. I.2). Compound I in Fig. I.2 (a substituted enol) is the major species in equilibrium (~95%) while the keto form is the minor species (~5%). In cases like this steric hindrance destabilizes the keto form (the two substituted aryl groups are 109° apart) while in the enol form 120° apart.

 

Fig. I.2: A keto-enol reaction. The enol form (I) is the major species since the keto form is destabilized by steric hindrance (the substituted aryl groups are closer in the keto form – the C-C angle is 109° and this is unfavorable due to steric hindrance)
Fig. I.2: A keto-enol reaction. The enol form (I) is the major species in this case since the keto form is destabilized by steric hindrance (the substituted aryl groups are closer in the keto form – the C-C angle is 109° and this is unfavorable due to steric hindrance)

 

Is there experimental evidence that keto-enol reactions are common for aldehydes and ketones?

If the NMR spectrum of a simple carbonyl compound in D2O is obtained – such as pinacolone’s (CH3)3CCOCH3 – the signal for protons next to the carbonyl group very slowly disappears. The isolated compound’s mass spectrum (after the above mentioned reaction with D2O is over) shows that those hydrogen atoms have been replaced by deuterium atoms. There is a peak at (M+1)+ or (M+2)+ or (M+3)+ instead of M+. The reaction is shown in Fig. I.3:

 Fig. I.3: Evidence for a keto-enol reaction when pinacolone (CH3)3CCOCH3 reacts with D2O. When the enol form of the pinacolone reverts to the keto form it picks up a deuteron instead of a proton because the solution consists almost entirely of D2O.
Fig. I.3: Evidence for a keto-enol reaction when pinacolone (CH3)3CCOCH3 reacts with D2O. When the enol form of the pinacolone reverts to the keto form it picks up a deuteron instead of a proton because the solution consists almost entirely of D2O.

 

What mechanism can be proposed for the above reaction?

Enolization is a slow process in neutral solution, even in D2O, and is catalyzed by acid or base in order to happen.

In the acid-catalyzed reaction the molecule is first protonated on oxygen and then loses the C-H proton in a second step (Fig. I.4). When the enol form reverts to the keto – since this is an equilibrium process – it picks up a deuteron instead of a proton since the solution is D2O.

 

Fig. I.4: The acid-catalyzed keto-enol reaction mechanism. If D2O is the solvent then the α-hydrogens to carbonyl group are replaced by deuterium.
Fig. I.4: The acid-catalyzed keto-enol reaction mechanism. If D2O is the solvent then the α-hydrogens to carbonyl group are replaced by deuterium.

In the base-catalyzed reaction the C-H proton is removed first by the base (for example hydroxide ion OH, OD in our case) and the proton (or D+ in our case) added to the oxygen atom in a second step (Fig. I.5).

Fig. I.5: The base-catalyzed keto-enol reaction mechanism. If D2O is the solvent then the α-hydrogens to carbonyl group are replaced by deuterium.
Fig. I.5: The base-catalyzed keto-enol reaction mechanism. If D2O is the solvent then the α-hydrogens to carbonyl group are replaced by deuterium.

Notice that the enolization reactions in Fig. I.4 and Fig. I.5 are catalytic. In the acid-catalyzed mechanism the D+ (or H+ if water is the solvent) is regenerated at the end (catalyst). In the base-catalyzed mechanism OD (or OH if water is the solvent) is regenerated at the end (catalyst).

The enolate ion generated from the enol (Fig. I.6) in the base-catalyzed mechanism is nucleophilic due to:

  • Oxygen’s small atomic radius
  • Formal negative charge

An enolate ion is an ion with a negative charge on oxygen with adjacent C-C double bond.

 

 Fig. I.6: Enolate ion resonance contributors. Although the major contributor is resonace structure I when it reacts as a nucleophile structure II is more reactive.
Fig. I.6: Enolate ion resonance contributors. Although the major contributor is resonace structure I when it reacts as a nucleophile structure II is more reactive.

Enolates are reactive nucleophiles. Although the major enolate Lewis contributor shows concentration of electron density on the electronegative oxygen when it reacts as a nucleophile, it behaves like the electron density is concentrated on the α-carbon next to carbonyl group.

Enolates react with alkyl halides, aldehydes/ketones and esters and these reactions are shown in the post entitled “The chemistry of enolate ions – Enolate ion reactions”.


 

References
  1. A.J. Kresge, Pure Appl. Chem., 63, 213 (1991)
  2. B. Capon, The Chemistry of Enols, Wiley, NY, 307–322 (1990)
  3. S.E. Biali et al., J. Am. Chem. Soc. 107, 1007 (1985).

 

 

 

 

.

http://www.slideshare.net/chemsant/nmr-dynamic

 

 

http://article.sapub.org/10.5923.j.ajoc.20140401.01.html

2-fluoro-3-hydroxycyclopent-2-enone and 2-fluoro- 1,3-cyclopentanedione (1c): This compound was obtained as a 52:48 mixture of keto-enol and diketo tautomers in 50% yield as a yellow-brown solid, mp 70-72°C. NMR:1H: δ 2.36 (t, 3JH-H = 16.2 Hz, 2H), 2.85 (m, 2H), 5.91 (d, 2JH-F = 47.7 Hz, 1H). 13C: δ31.1, 90.8 (d, 1JC-F = 251.3 Hz), 122.3 (d, 1JC-F = 233.9 Hz), 210.1 (d, 2JC-F = 31.0 Hz). 19F: keto-enol: δ-161.4 (s, 1F); diketo: δ-195.5 (d, 2JF-H = 47.7 Hz, 1F). Analysis calcd for C5H5FO2: C, 51.73, H, 4.34. Found: C, 51.48, H, 4.31.

 

 

 

 

 

Take a tour

Surat gujarat india

 

Map of surat city.

.

ISKCON

Surat-European tombs

 

 

Kathiyavadi food, Garden Restaurant, Restaurant in surat, Restaurant, Restaurant Services, Food

 

 

 

 

 

/////////

Share

(1S)-(-)-beta-Pinene

 Uncategorized  Comments Off on (1S)-(-)-beta-Pinene
Jun 012015
 

his

(1S)-(1)-beta-Pinene Structure

(1S)-(1)-beta-Pinene, (1S)-(-)-beta-Pinene

 

.

image of (1s)-(-)-b-pinene.

 

image of (1s)-(-)-b-pinene

 

 

13C NMR

.

 

image of (1s)-(-)-b-pinene.

 

APT

image of (1s)-(-)-b-pinene.

DEPT

image of (1s)-(-)-b-pinene.

COSY

image of (1s)-(-)-b-pinene.

HETCOR

image of (1s)-(-)-b-pinene

IR

 

MASS

.

 

.

 

 

 

RAMAN

 

 

CAS No. 18172-67-3
Chemical Name: (1S)-(1)-beta-Pinene
Synonyms: β-Pinen;FEMA 2903;PINENE BETA;(1S)-(-)-B-PINENE;LAEVO-BETA-PINENE;(1s)-(-)-á-pinene;ALPHA,BETA-PINENE;(1S)-(-)-SS-PINENE;PINENE, (1S)-(-)-B-;(1s)-(1)-beta-pinene
CBNumber: CB8270232
Molecular Formula: C10H16
Formula Weight: 136.23
MOL File: 18172-67-3.mol
(1S)-(1)-beta-Pinene Property
mp : −61 °C(lit.)
bp : 165-167 °C(lit.)
alpha : -18.5 º (c=neat 25 ºC)
density : 0.866 g/mL at 25 °C
vapor density : 4.7 (vs air)
vapor pressure : ~2 mm Hg ( 20 °C)
FEMA : 2903
refractive index : n20/D 1.478
Fp : 91 °F
storage temp. : 2-8°C
Water Solubility : insoluble
Merck : 14,7446
BRN : 2038282
CAS DataBase Reference: 18172-67-3(CAS DataBase Reference)
NIST Chemistry Reference: Bicyclo[3.1.1]heptane, 6,6-dimethyl-2-methylene-, (1S)-(18172-67-3)
EPA Substance Registry System: Bicyclo[3.1.1]heptane, 6,6-dimethyl-2-methylene-, (1S,5S)-(18172-67-3)
Safety
Hazard Codes : Xn,N,Xi
Risk Statements : 10-20/21/22-36/37/38-43-51-65-51/53
Safety Statements : 16-26-36/37-46-61-62
RIDADR : UN 2319 3/PG 3
WGK Germany : 3
RTECS : DT5077000
HazardClass : 3
PackingGroup : III
HS Code : 29021910

take a tour

Amalner,  Jalgaon, Maharashtra, India

Amalner – Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Amalner

Amalner, India is a city and a municipal council in Jalgaon district in the state of Maharashtra, India, situated on the bank of the Bori River. Amalner is the …

History – ‎Geography – ‎Demographics – ‎Education

Map of amalner maharashtra

 

 

10000 devout Hindus were present for the Hindu Dharmajagruti Sabha at Amalner, Maharashtra

 

end of amalner…………

 

Daulatabad Fort Market

India / Maharashtra / Aurangabad /

Daulatabad, Maharashtra – Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Daulatabad,_Maharashtra

Daulatabad also known as Devagiri is a town which includes the Devagiri-Daulatabad fort It carries the distinction of remaining undefeated in battle.

Fort of Daulatabad – ‎The City – ‎Monuments – ‎Transport
 Marketplace
 Map of daulatabad

Market place and Hotel/Dhaba
Nearby cities: Aurangabad, New Aurangabad, CIDCO. , Gangapur
Coordinates:   19°56’36″N   75°13’17″E
 

//////////////

Share this:

Share

Some new cancer drugs are available in other countries, but not in India. BY E. Kumar Sharma, Dec 22, 2013

 cancer  Comments Off on Some new cancer drugs are available in other countries, but not in India. BY E. Kumar Sharma, Dec 22, 2013
Mar 102015
 

 

E. Kumar Sharma    Follow @EKumarSharma   Edition:Dec 22, 2013

http://businesstoday.intoday.in/story/some-new-cancer-drugs-still-not-available-in-india/1/201095.html

Share

Welcome Scientific update to Pune, India 2-3 and 4-5 Dec 2014 for celebrating Process chemistry

 companies, PROCESS  Comments Off on Welcome Scientific update to Pune, India 2-3 and 4-5 Dec 2014 for celebrating Process chemistry
Sep 292014
 

 

WEBSITE http://www.scientificupdate.co.uk/

SCIENTIFIC UPDATE HAS A REPUTATION FOR ITS HIGH QUALITY EVENTS, BOTH FOR THE SCIENTIFIC CONTENT AND ALSO FOR THE EFFICIENCY OF ITS ORGANISATION. KEEP YOUR SKILLS UP TO DATE AND INVEST IN YOUR CONTINUING PERSONAL PROFESSIONAL DEVELOPMENT.

http://makeinindia.com/

TRAINING COURSE   2-3 DEC 2014

Process Development for Low Cost Manufacturing

When:02.12.2014 – 03.12.2014

Tutors:

Where: National Chemical Laboratory – Pune, India

Brochure:View Brochure

Register http://scientificupdate.co.uk/training/scheduled-training-courses.html

 

DESCRIPTION

Chemical process research and development is recognised as a key function during the commercialisation of a new product particularly in the generic and contract manufacturing arms of the chemical, agrochemical and pharmaceutical industries.

The synthesis and individual processes must be economic, safe and must generate product that meets the necessary quality requirements.

This 2-day course presented by highly experienced process chemists will concentrate on the development and optimisation of efficient processes to target molecules with an emphasis on raw material cost, solvent choice, yield improvement, process efficiency and work up, and waste minimisation.

Process robustness testing and reaction optimisation via stastical methods will also be covered.

A discussion of patent issues and areas where engineering and technology can help reduce operating costs.

The use of engineering and technology solutions to reduce costs will be discussed and throughout the course the emphasis will be on minimising costs and maximising returns.

 

 

Conference 4-5 DEC 2014

TITLE . Organic Process Research & Development – India

Subtitle:The 32nd International Conference and Exhibition

When:04.12.2014 – 05.12.2014

Where:National Chemical Laboratory – Pune, India

Brochure:View Brochure

Register..http://scientificupdate.co.uk/conferences/conferences-and-workshops.html

Organic Process Research & Development - India

for

  • Process Research & Development Chemists
  • Chemical Engineers in Industry
  • Heads of Departments & Team Leaders

Benefits

  • Invest in yourself: keeping up to date on current developments and future trends could mean greater job security.
  • Learn from a wide range of industrial case studies given by hand-picked industrial speakers.
  • Take home relevant ideas and information that are directly applicable to your own work with the full proceedings and a CD of the talks.
  • Save time. Our intensive, commercial-free programme means less time away from work.
  • Meet and network with the key people in the industry in a relaxed and informal atmosphere.

Do you want to improve efficiency and innovation in your synthetic route design, development and optimisation?

The efficient conversion of a chemical process into a process for manufacture on tonnage scale has always been of importance in the chemical and pharmaceutical industries. However, in the current economic and regulatory climate, it has become increasingly vital and challenging to do so efficiently. Indeed, it has never been so important to keep up to date with the latest developments in this dynamic field.

At this Organic Process Research & Development Conference, you will hear detailed presentations and case studies from top international chemists. The hand-picked programme of speakers has been put together specifically for an industrial audience. They will discuss the latest issues relating to synthetic route design, development and optimisation in the pharmaceutical, fine chemical and allied fields.  Unlike other conferences, practically all our speakers are experts from industry, which means the ideas and information you take home will be directly applicable to your own work.

The smaller numbers at our conferences create a more intimate atmosphere. You will enjoy plenty of opportunities to meet and network with speakers and fellow attendees during the reception, sit-down lunches and extended coffee breaks in a relaxed and informal environment. Together, you can explore the different strategies and tactics evolving to meet today’s challenges.

This is held in Pune, close proximity to Mumbai city, very convenient to stay and travel to either in Pune or Mumbai. I feel this should be an opportunity to be grabbed before the conference is full and having no room

Hurry up rush

References

http://newdrugapprovals.org/scientificupdate-uk-on-a-roll/

http://scientificupdate.co.uk/conferences/conferences-and-workshops.html

http://en.wikipedia.org/wiki/Pune

PROFILES

Will Watson

Will Watson

Dr Will Watson gained his PhD in Organic Chemistry from the University of Leeds in 1980. He joined the BP Research Centre at Sunbury-on-Thames and spent five and a half years working as a research chemist on a variety of topics including catalytic dewaxing, residue upgrading, synthesis of novel oxygenates for use as gasoline supplements, surfactants for use as gasoline detergent additives and non-linear optical compounds.

In 1986 he joined Lancaster Synthesis and during the next 7 years he was responsible for laboratory scale production and process research and development to support Lancaster’s catalogue, semi-bulk and custom synthesis businesses.

In 1993 he was appointed to the position of Technical Director, responsible for all Production (Laboratory and Pilot Plant scale), Process Research and Development, Engineering and Quality Control. He helped set up and run the Lancaster Laboratories near Chennai, India and had technical responsibility for the former PCR laboratories at Gainesville, Florida.

He joined Scientific Update as Technical Director in May 2000. He has revised and rewritten the ‘Chemical Development and Scale Up in the Fine Chemical & Pharmaceutical Industries’ course and gives this course regularly around the world. He has been instrumental in setting up and developing new courses such as ‘Interfacing Chemistry with Patents’ and ‘Making and Using Fluoroorganic Molecules’.

He is also involved in an advisory capacity in setting up conferences and in the running of the events. He is active in the consultancy side of the business and sits on the Scientific Advisory Boards of various companies.

………………………………………………………………………………………………….

John Knight

John Knight

Dr John Knight gained a first class honours degree in chemistry at the University of Southampton, UK. John remained at Southampton to study for his PhD in synthetic methodology utilizing radical cyclisation and dipolar cyloaddition chemistry.

After gaining his PhD, John moved to Columbia University, New York, USA where he worked as a NATO Postdoctoral Fellow with Professor Gilbert Stork. John returned to the UK in 1987 joining Glaxo Group Research (now GSK) as a medicinal chemist, where he remained for 4 years before moving to the process research and development department at Glaxo, where he remained for a further 3½ years.

During his time at Glaxo, John worked on a number of projects and gained considerable plant experience (pilot and manufacturing). In 1994 John moved to Oxford Asymmetry (later changing its name to Evotec and most recently to Aptuit) when it had just 25 staff. John’s major role when first at Oxford Asymmetry was to work with a consultant project manager to design, build and commission a small pilot plant, whilst in parallel developing the chemistry PRD effort at Oxford Asymmetry.

The plant was fully operational within 18 months, operating to a 24h/7d shift pattern. John continued to run the pilot plant for a further 3 years, during which time he had considerable input into the design of a second plant, which was completed and commissioned in 2000. After an 18-month period at a small pharmaceutical company, John returned to Oxford in 2000 (by now called Evotec) to head the PRD department. John remained in this position for 6.5 years, during which time he assisted in its expansion, established a team to perform polymorph and salt screening studies and established and maintained high standards of development expertise across the department.

John has managed the chemical development and transfer of numerous NCE’s into the plant for clients and been involved in process validations. He joined Scientific Update in January 2008 as Scientific Director.

Pune images

From top: Fergusson College, Mahatma Gandhi Road (left), Shaniwarwada (right), the HSBC Global Technology India Headquarters, and the National War Memorial Southern Command
From top:1 Fergusson College, 2 Mahatma Gandhi RoadShaniwarwada 3 the HSBC Global Technology India Headquarters, and the 4National War Memorial Southern Command

 

NCL PUNE

The National Chemical Laboratory is located in the state of Maharashtra in India. Maharashtra state is the largest contributor to India’s GDP. The National Chemical Laboratory is located in Pune city, and is the cultural capital of Maharashtra. Pune city is second only to Mumbai (the business capital of India) in size and industrial strength. Pune points of interest include: The tourist places in Pune include: Lal Deval Synagogue, Bund Garden, Osho Ashram, Shindyanchi Chhatri and Pataleshwar Cave Temple.

http://makeinindia.com/

MAKE IN INDIA

http://makeinindia.com/

http://makeinindia.com/sector/pharmaceuticals/

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

 

 

 

KEYWORDS

JOHN KNIGHT, WILL WATSON,  SCIENTIFIC UPDATE, PROCESS, COURSE, CONFERENCE, INDIA, PUNE, PROCESS DEVELOPMENT, LOW COST,  MANUFACTURING, SCALEUP

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: