AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

Nanopalladium-catalyzed conjugate reduction of Michael acceptors – application in flow

 PROCESS, SYNTHESIS  Comments Off on Nanopalladium-catalyzed conjugate reduction of Michael acceptors – application in flow
Mar 102016
 

 

Green Chem., 2016, Advance Article
DOI: 10.1039/C5GC02920A, Communication
Anuja Nagendiran, Henrik Sorensen, Magnus J. Johansson, Cheuk-Wai Tai, Jan-E. Backvall
A continuous-flow approach towards the selective nanopalladium-catalyzed hydrogenation of the olefinic bond in various Michael acceptors, which could lead to a greener and more sustainable process, has been developed.
A continuous-flow approach towards the selective nanopalladium-catalyzed hydrogenation of the olefinic bond in various Michael acceptors, which could lead to a greener and more sustainable process, has been developed. The nanopalladium is supported on aminofunctionalized mesocellular foam. Both aromatic and aliphatic substrates, covering a variation of functional groups such as acids, aldehydes, esters, ketones, and nitriles were selectively hydrogenated in high to excellent yields using two different flow-devices (H-Cube® and Vapourtec). The catalyst was able to hydrogenate cinnamaldehyde continuously for 24 h (in total hydrogenating 19 g cinnanmaldehyde using 70 mg of catalyst in the H-cube®) without showing any significant decrease in activity or selectivity. Furthermore, the metal leaching of the catalyst was found to be very low (ppb amounts) in the two flow devices
str1
3 Gottlieb, H. E.; Kotlyar, V; Nudelman, A. J. Org. Chem. 1997, 62, 7512-7515.
str1

Nanopalladium-catalyzed conjugate reduction of Michael acceptors – application in flow

*Corresponding authors
aDepartment of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
E-mail: jeb@organ.su.se
bBerzelii Centre EXSELENT on Porous Materials, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
cAstraZeneca R&D, Innovative Medicines, Cardiovascular and Metabolic Disorders, Medicinal Chemistry, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
dDepartment of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
Green Chem., 2016, Advance Article

DOI: 10.1039/C5GC02920A

///////

Share

Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products

 PROCESS, SYNTHESIS  Comments Off on Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products
Jan 052016
 

 

Abstract Image

Recently, application of the flow technologies for the preparation of fine chemicals, such as natural products or Active Pharmaceutical Ingredients (APIs), has become very popular, especially in academia. Although pharma industry still relies on multipurpose batch or semibatch reactors, it is evident that interest is arising toward continuous flow manufacturing of organic molecules, including highly functionalized and chiral compounds. Continuous flow synthetic methodologies can also be easily combined to other enabling technologies, such as microwave irradiation, supported reagents or catalysts, photochemistry, inductive heating, electrochemistry, new solvent systems, 3D printing, or microreactor technology. This combination could allow the development of fully automated process with an increased efficiency and, in many cases, improved sustainability. It has been also demonstrated that a safer manufacturing of organic intermediates and APIs could be obtained under continuous flow conditions, where some synthetic steps that were not permitted for safety reasons can be performed with minimum risk. In this review we focused our attention only on very recent advances in the continuous flow multistep synthesis of organic molecules which found application as APIs, especially highlighting the contributions described in the literature from 2013 to 2015, including very recent examples not reported in any published review. Without claiming to be complete, we will give a general overview of different approaches, technologies, and synthetic strategies used so far, thus hoping to contribute to minimize the gap between academic research and pharmaceutical manufacturing. A general outlook about a quite young and relatively unexplored field of research, like stereoselective organocatalysis under flow conditions, will be also presented, and most significant examples will be described; our purpose is to illustrate all of the potentialities of continuous flow organocatalysis and offer a starting point to develop new methodologies for the synthesis of chiral drugs. Finally, some considerations on the perspectives and the possible, expected developments in the field are briefly discussed.

Two examples out of several in the publication discussed below……………

 

1  Diphenhydramine Hydrochloride

Figure
Scheme 1. Continuous Flow Synthesis of Diphenhydramine Hydrochloride
Diphenhydramine hydrochloride is the active pharmaceutical ingredient in several widely used medications (e.g., Benadryl, Zzzquil, Tylenol PM, Unisom), and its worldwide demand is higher than 100 tons/year.
In 2013, Jamison and co-workers developed a continuous flow process for the synthesis of 3minimizing waste and reducing purification steps and production time with respect to existing batch synthetic routes (Scheme 1). In the optimized process, chlorodiphenylmethane 1 and dimethylethanolamine 2 were mixed neat and pumped into a 720 μL PFA tube reactor (i.d. = 0.5 mm) at 175 °C with a residence time of 16 min. Running the reaction above the boiling point of 2and without any solvent resulted in high reaction rate. Product 3, obtained in the form of molten salt (i.e., above the melting point of the salt), could be easily transported in the flow system, a procedure not feasible on the same scale under batch conditions.
The reactor outcome was then combined with preheated NaOH 3 M to neutralize ammonium salts. After quenching, neutralized tertiary amine was extracted with hexanes into an inline membrane separator. The organic layer was then treated with HCl (5 M solution in iPrOH) in order to precipitate diphenhydramine hydrochloride 3 with an overall yield of 90% and an output of 2.4 g/h.

2 Olanzapine

Figure
Scheme 2. Continuous Flow Synthesis of Olanzapine
Atypical antipsychotic drugs differ from classical antipsychotics because of less side effects caused (e.g., involuntary tremors, body rigidity, and extrapyramidal effects). Among atypical ones, olanzapine 10, marketed with the name of Zyprexa, is used for the treatment of schizophrenia and bipolar disorders.
In 2013 Kirschning and co-workers developed the multistep continuous flow synthesis of olanzapine 10 using inductive heating (IH) as enabling technology to dramatically reduce reaction times and to increase process efficiency.(16) Inductive heating is a nonconventional heating technology based on the induction of an electromagnetic field (at medium or high frequency depending on nanoparticle sizes) to magnetic nanoparticles which result in a very rapid increase of temperature.As depicted in Scheme 2 the first synthetic step consisted of coupling aryl iodide 4 and aminothiazole 5 using Pd2dba3 as catalyst and Xantphos as ligand. Buchwald–Hartwig coupling took place inside a PEEK reactor filled with steel beads (0.8 mm) and heated inductively at 50 °C (15 kHz). AcOEt was chosen as solvent since it was compatible with following reaction steps. After quenching with distilled H2O and upon in-line extraction in a glass column, crude mixture was passed through a silica cartridge in order to remove Pd catalyst. Nitroaromatic compound 6 was then subjected to reduction with Et3SiH into a fixed bed reactor containing Pd/C at 40 °C. Aniline 7 was obtained in nearly quantitative yield, and the catalyst could be used for more than 250 h without loss of activity. The reactor outcome was then mixed with HCl (0.6 M methanol solution) and heated under high frequency (800 kHz) at 140 °C. Acid catalyzed cyclization afforded product 8 with an overall yield of 88%. Remarkably, the three step sequence did not require any solvent switch, and the total reactor volume is about 8 mL only.
The final substitution of compound 8 with piperazine 9 was carried out using a 3 mL of PEEK reactor containing MAGSILICA as inductive material and silica-supported Ti(OiPr)4 as Lewis acid. Heating inductively the reactor at 85 °C with a medium frequency (25 kHz) gave Olanzapine 10 in 83% yield.

SEE MORE IN THE PUBLICATION…………..

 

Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products

Dipartimento di Chimica, Università degli Studi di Milano Via Golgi 19, I-20133 Milano, Italy
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.5b00325
Publication Date (Web): November 26, 2015
Copyright © 2015 American Chemical Society

ACS Editors’ Choice – This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

Riccardo Porta

Riccardo Porta

 PhD Student
Dipartimento di Chimica, Università degli Studi di Milano Via Golgi 19, I-20133 Milano, Italy

Map of milan italy

 

 

//////////

Share

Toward a Large-Scale Approach to Milnacipran Analogues Using Diazo Compounds in Flow Chemistry

 PROCESS, SYNTHESIS  Comments Off on Toward a Large-Scale Approach to Milnacipran Analogues Using Diazo Compounds in Flow Chemistry
Nov 112015
 

 

Abstract Image

The safe use of diazo reagents for the preparation of a key structure in the synthesis of milnacipran analogues is described herein. Using continuous flow technology, the diazo reagent is synthesized, purified, dried, and subsequently used in semi-batch mode for an intramolecular cyclopropanation. Side products formed in the reaction are isolated and rationalized to optimize the process. Different separation techniques in flow are compared with regard to their ability to produce pure and dry diazo reagents. The studies yield a scalable process to a key intermediate in the syntheses of milnacipran and its possible substituted analogues.

 

Toward a Large-Scale Approach to Milnacipran Analogues Using Diazo Compounds in Flow Chemistry

School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.
Institut de Recherche Pierre Fabre, 81603 Gaillac, France
§ Pierre Fabre Médicament, Parc Industriel de la Chartreuse, 81106 Castres, France
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.5b00308
Publication Date (Web): October 29, 2015
Copyright © 2015 American Chemical Society
*E-mail: wirth@cf.ac.uk.

http://pubs.acs.org/doi/abs/10.1021/acs.oprd.5b00308

 

 

 

 

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO …..FOR BLOG HOME CLICK HERE

Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Facebook FACEBOOK

Join me on twitterFollow amcrasto on Twitter
Join me on google plus Googleplus

 amcrasto@gmail.com

/////

Share

A monolith immobilised iridium Cp* catalyst for hydrogen transfer reactions under flow conditions

 Uncategorized  Comments Off on A monolith immobilised iridium Cp* catalyst for hydrogen transfer reactions under flow conditions
Nov 032015
 

An immobilised monolithic iridium hydrogen transfer catalyst has been developed for use in flow based processing. The monolithic construc thas been used for several redox reductions demonstrating excellent recyclability, good turnover numbersand high chemical stability giving negligible metal leaching over extended periods of use.

A FlowSyn Auto-LF system was employed to automatically process a library of 40 aldehydes and ketones.

 

An immobilised iridium hydrogen transfer catalyst has been developed for use in flow based processing by incorporation of a ligand into a porous polymeric monolithic flow reactor. The monolithic construct has been used for several redox reductions demonstrating excellent recyclability, good turnover numbers and high chemical stability giving negligible metal leaching over extended periods of use.

 

Graphical abstract: A monolith immobilised iridium Cp* catalyst for hydrogen transfer reactions under flow conditions
*Corresponding authors
aDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
E-mail: mavirm@hotmail.com
bDepartment of Chemistry, University of Durham, South Road, Durham, UK
Org. Biomol. Chem., 2015,13, 1768-1777
DOI: 10.1039/C4OB02376E

http://pubs.rsc.org/en/content/articlelanding/2015/ob/c4ob02376e#!divAbstract

 

 

////////

Share

Applying Flow Chemistry: Methods, Materials, and Multistep Synthesis

 SYNTHESIS  Comments Off on Applying Flow Chemistry: Methods, Materials, and Multistep Synthesis
Sep 052015
 

Abstract Image

 

The synthesis of complex molecules requires control over both chemical reactivity and reaction conditions. While reactivity drives the majority of chemical discovery, advances in reaction condition control have accelerated method development/discovery. Recent tools include automated synthesizers and flow reactors. In this Synopsis, we describe how flow reactors have enabled chemical advances in our groups in the areas of single-stage reactions, materials synthesis, and multistep reactions. In each section, we detail the lessons learned and propose future directions.

 

 

Applying Flow Chemistry: Methods, Materials, and Multistep Synthesis

Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
§ Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
J. Org. Chem., 2013, 78 (13), pp 6384–6389
DOI: 10.1021/jo400583m

///////

Share

Large-Scale Continuous Flow Transformation of Oximes into Fused-Bicyclic Isoxazolidines: An Example of Process Intensification

 Uncategorized  Comments Off on Large-Scale Continuous Flow Transformation of Oximes into Fused-Bicyclic Isoxazolidines: An Example of Process Intensification
Feb 122015
 

Abstract Image

Here, we report a continuous flow protocol for the [3 + 2] cycloaddition of nitrones, in situ generated from oximes, into bicyclic isoxazolidines. This thermal process required very high temperatures to be efficient that were not easily reached in conventional reactors. A couple of examples are presented and in both the flow process showed a greater performance than the batch mode. The process intensification study allowed the generation of 120 g/h of a key pharmaceutical intermediate.

Large-Scale Continuous Flow Transformation of Oximes into Fused-Bicyclic Isoxazolidines: An Example of Process Intensification

see

http://pubs.acs.org/doi/abs/10.1021/op500350y

† Centro de Investigación Lilly S.A., Avda. de la Industria 30, Alcobendas-Madrid 28108, Spain
‡ Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285,United States
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/op500350y
Publication Date (Web): January 28, 2015
Copyright © 2015 American Chemical Society

Share

Synthetic chemistry fuels interdisciplinary approaches to the production of artemisinin

 SYNTHESIS  Comments Off on Synthetic chemistry fuels interdisciplinary approaches to the production of artemisinin
Jan 242015
 

7 Semi-synthesis of artemisinin using continuous flow. The Seeberger group has recently developed a continuous flow approach to the production of …

In the developing world, multi-drug resistant malaria caused by the parasite Plasmodium falciparum is an epidemic that claims the lives of 1–3 million people per year. Artemisinin, a naturally occurring small molecule that has seen little resistance from malarial parasites, is a valuable weapon in the fight against this disease. Several easily accessible artemisinin derivatives, including artesunate and artemether, display potent antimalarial activity against drug-resistant malaria strains; however, the global supply of artemisinin from natural sources alone remains highly inconsistent and unreliable. As a result, several approaches to artemisinin production have been developed, spanning areas such as total synthesis, flow chemistry, synthetic biology, and semi-synthesis. This review highlights achievements in all areas, in addition to the interplay between synthetic biology and synthetic chemistry that has fueled the recent industrial-scale production of artemisinin.

Graphical abstract: Synthetic chemistry fuels interdisciplinary approaches to the production of artemisinin

Synthetic chemistry fuels interdisciplinary approaches to the production of artemisinin

*

Corresponding authors
aDepartment of Chemistry and Biochemistry, University of California, Los Angeles, USA
Nat. Prod. Rep., 2015, Advance Article

DOI: 10.1039/C4NP00113C

Neil garg

http://www.chem.ucla.edu/dept/Faculty/garg/Garg_Group/About_Neil.html

Michael A. Corsello

Share

Synthesis of Methoxyisopropyl (MIP)-Protected (R)-Mandelonitrile and Derivatives in a Flow Reactor

 SYNTHESIS  Comments Off on Synthesis of Methoxyisopropyl (MIP)-Protected (R)-Mandelonitrile and Derivatives in a Flow Reactor
Jan 042015
 

 

 

 

Cyanohydrins are synthetically versatile chiral building blocks in organic synthesis. They can be conveniently synthesized in enantiomerically pure form via chemoenzymatic hydrogen cyanide addition onto the corresponding aldehyde using hydroxynitrile lyase.

Recently, we reported that such transformations can be efficiently carried out in a continuous flow manner using microreactors. Since racemization of enantiopure cyanohydrins occurs readily under slightly basic conditions, they should be protected before the follow-up reactions, preferably under acidic conditions.

In this contribution, we demonstrate that the methoxyisopropyl protection of mandelonitrile can be conveniently optimized in an automated microscale continuous flow system and subsequently scaled up under the same conditions by applying a larger flow reactor.

 

Synthesis of Methoxyisopropyl (MIP)-Protected (R)-Mandelonitrile and Derivatives in a Flow Reactor

http://www.akademiai.com/content/9488206462627n38/?p=6ed413d7b9fb47fe9fe7e1262c37694f&pi=2

Journal of Flow Chemistry
Publisher Akadémiai Kiadó
ISSN 2062-249X (Print)
2063-0212 (Online)
Subject Flow Chemistry
Issue Volume 2, Number 4/December 2012
Pages 124-128
DOI 10.1556/JFC-D-12-00008

Radboud University

Authors
Mariëlle M.E. Delville, Jasper J.F. Gool, Ivo M. Wijk, Jan C.M. Hest, Floris P.J.T. Rutjes1 Email for f.rutjes@science.ru.nl  f.rutjes@science.ru.nl

1Institute for Molecules and Materials Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen the Netherlands

Floris P.J.T. Rutjes

Groepsfoto IMM 2014 klein-1

 

The IMM-office is located on the 3rd floor of the Huygens building, which is at walking distance (about 5 min.) from the railway station Nijmegen Heyendaal.

 

 

Share

Metal-free coupling of saturated heterocyclic sulfonylhydrazones with boronic acids

 SYNTHESIS  Comments Off on Metal-free coupling of saturated heterocyclic sulfonylhydrazones with boronic acids
Nov 132014
 
Abstract Image

The coupling of aromatic moieties with saturated heterocyclic partners is currently an area of significant interest for the pharmaceutical industry. Herein, we present a procedure for the metal-free coupling of 4-, 5-, and 6-membered saturated heterocyclic p-methoxyphenyl (PMP) sulfonylhydrazones with aryl and heteroaromatic boronic acids. This procedure enables a simple, two-step synthesis of a range of functionalized sp2–sp3 linked bicyclic building blocks, including oxetanes, piperidines, and azetidines, from their parent ketones.

 

Metal-free coupling of saturated heterocyclic sulfonylhydrazones with boronic acids

D.M. Allwood, D.C. Blakemore, A.D. Brown, S.V. Ley, J. Org. Chem. 2014, 79, 328-338

http://pubs.acs.org/doi/abs/10.1021/jo402526z

jo-2013-02526z_0011

Share

Mild and selective heterogeneous catalytic hydration of nitriles to amides by flowing through manganese dioxide

 SYNTHESIS  Comments Off on Mild and selective heterogeneous catalytic hydration of nitriles to amides by flowing through manganese dioxide
Nov 132014
 
Abstract Image

A sustainable flow chemistry process for the hydration of nitriles, whereby an aqueous solution of the nitrile is passed through a column containing commercially available amorphous manganese dioxide, has been developed. The product is obtained simply by concentration of the output stream without any other workup steps. The protocol described is rapid, robust, reliable, and scalable, and it has been applied to a broad range of substrates, showing a high level of chemical tolerance.

 

Mild and selective heterogeneous catalytic hydration of nitriles to amides by flowing through manganese dioxide

C. Battilocchio, J.M. Hawkins, S.V. Ley, Org. Lett. 2014, 16, 1060-1063

http://pubs.acs.org/doi/abs/10.1021/ol403591c

 

ol-2013-03591c_0009

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: