AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

Turkish man pleads guilty to importing illegal cancer drugs

 cancer, Uncategorized  Comments Off on Turkish man pleads guilty to importing illegal cancer drugs
Aug 182014
 

 

August 15, 2014

Release

Sabahaddin Akman, owner of the Istanbul, Turkey, firm Ozay Pharmaceuticals, has pleaded guilty to charges of smuggling misbranded and adulterated cancer treatment drugs into the United States.

Akman pleaded guilty in the U.S. District Court for the Eastern District of Missouri, in St. Louis, Missouri, where he initially shipped his illegal drugs. The drugs did not meet the FDA’s standards and had not been approved for distribution in the United States.

The FDA’s Office of Criminal Investigations coordinated a complex, multi-layered international investigation that led to Akman’s arrest in Puerto Rico in January 2014. The investigation identified Akman and his company as a source of Altuzan, the Turkish version of the cancer treatment drug Avastin.

“These criminals exploited our most vulnerable patients when they arranged for their illicit drugs to be brought into the United States and used to treat cancer patients. We will continue to investigate and bring to justice those who prey on our ill, susceptible patients,” said Philip J. Walsky, acting director of the FDA’s Office of Criminal Investigations. “We commend our colleagues – international, national, state, and local – whose contributions helped bring this case to a successful conclusion.”

Akman, along with his employee, Ozkan Semizoglu, obtained the illicit drugs and then used shipping labels to conceal the illegal nature of the shipments, including customs declarations falsely describing the contents as gifts. They also broke large drug shipments into several smaller packages to reduce the likelihood of seizures by U.S. Customs and Border Protection authorities.

Along with the FDA and Europol, the international operation involved several German government offices: the Bonn prosecutor; the Federal Criminal Police, the Dusseldorf police, and the German State Criminal Police.  Special agents of the U.S. Department of State’s Diplomatic Security Service assigned to the U.S. Embassy’s Regional Security Office in Ankara, Turkey, and the U.S. Consulate General’s Overseas Criminal Investigations Branch in Istanbul, Turkey also played key roles in the successful resolution of this case.

Share

Black Fungus Health Benefits (Anticancer Remedy)

 cancer  Comments Off on Black Fungus Health Benefits (Anticancer Remedy)
Jun 212014
 

Black fungus is a very common type of edible mushroom which is found in Nigeria and other parts of the world. It grows on trees mostly in the rural areas due to the vast untapped vegetation found there. –

See more at: http://www.dobbyssignature.com/2012/06/black-fungus-health-benefits-anticancer.html#sthash.MrRk0WH7.dpuf

http://www.dobbyssignature.com/2012/06/black-fungus-health-benefits-anticancer.html

Share

MIT chemists design nanoparticles that can deliver three cancer drugs at a time.

 cancer, nanotechnology  Comments Off on MIT chemists design nanoparticles that can deliver three cancer drugs at a time.
Apr 222014
 

 

MIT chemists design nanoparticles that can deliver three cancer drugs at a time.

Delivering chemotherapy drugs in nanoparticle form could help reduce side effects by targeting the drugs directly to the tumors. In recent years, scientists have developed nanoparticles that deliver one or two chemotherapy drugs, but it has been difficult to design particles that can carry any more than that in a precise ratio.

Now MIT chemists have devised a new way to build such nanoparticles, making it much easier to include three or more different drugs. In a paper published in the Journal of the American Chemical Society, the researchers showed that they could load their particles with three drugs commonly used to treat ovarian cancer.

read at
TECHNOLOGYREVIEW.COM

 

Share

One-Two Nanopunch For Difficult-To-Treat Breast Cancer Drug Delivery: Layered nanoparticles deliver a gene silencer and a drug to shrink tumors

 cancer, drug delivery  Comments Off on One-Two Nanopunch For Difficult-To-Treat Breast Cancer Drug Delivery: Layered nanoparticles deliver a gene silencer and a drug to shrink tumors
Apr 212014
 
Illustration of layer-by-layer synthesis of nanoparticles for treating breast cancer tumors

Double Duty
To deliver a one-two nanopunch to triple-negative breast cancer tumors, researchers start with a lipid-coated sphere filled with the chemotherapy drug doxorubicin (left). Then they add alternating layers of poly-L-arginine and an siRNA sequence (center), capped off by a layer of hyaluronic acid (right), which disguises the particle from the body’s immune system.
read at
Women with triple-negative breast cancer, a rare but aggressive form of the disease, often find that it is difficult to treat. An early diagnosis allows more treatment options, but women with this type of cancer generally have a lower survival rate than those with other types of breast cancers. To tackle the disease, a team of researchers has developed a nanomedicine that delivers a one-two punch to tumors that weakens their defenses and obliterates them (ACS Nano 2013, DOI: 10.1021/nn4047925).
Share

Nanoparticles Deliver Three Cancer Drugs To Tumors Drug Delivery: Polymeric materials deliver specific amounts of multiple drugs to disease cells

 nanotechnology  Comments Off on Nanoparticles Deliver Three Cancer Drugs To Tumors Drug Delivery: Polymeric materials deliver specific amounts of multiple drugs to disease cells
Apr 212014
 
Graphic show that a nanoparticle with cisplatin core (green) is formed by polymerization of doxorubicin- and camptothecin-derivatized monomers and a cisplatin cross-linker.

CANCER KILLER
A drug-delivering nanoparticle with cisplatin core (green) is formed by polymerization of doxorubicin- and camptothecin-derivatized monomers and a cisplatin cross-linker.
The first polymer nanoparticles that carry a defined ratio of three cancer drugs and release them with three independent triggering mechanisms have been developed. The approach could provide a new way of delivering specific amounts of multiple drugs to patients and could help researchers optimize doses of such combination therapies.
The drug delivery nanoparticles were developed by Jeremiah A. Johnson of MIT and coworkers (J. Am. Chem. Soc. 2014, DOI: 10.1021/ja502011g).
read all this at
Share

This Little Known Chinese Herb Kills 12,000 Cancer Cells For Every Healthy Cell

 Ayurveda  Comments Off on This Little Known Chinese Herb Kills 12,000 Cancer Cells For Every Healthy Cell
Mar 272014
 
WORMWOOD PLANT
This Little Known Chinese Herb Kills 12,000 Cancer Cells For Every Healthy Cell
collective-evolution.com
Today, odds are that you have had/have cancer, or know somebody who does. In Canada, approximately one million Canadians that were alive at…
read all at
or
A little known Chinese herb might be eligible for the growing list of cancer killers via alternative methods of treatment. According to  studies published  in Life Sciences, Cancer Letters and Anticancer Drugs, artemesinin, a derivative of the wormwood plant commonly used in Chinese medicine, can kill off  cancer cells, and do it at a rate of 12,000 cancer cells for every healthy cell.
Artemisinin is currently FDA approved for the treatment of malaria, it’s very safe and easy to use. It’s inexpensive and works on all cancers but has yet to find it’s way into the mainstream. It’s really time to move beyond just radiation, surgery and chemotherapy for the treatment of cancer.
Artemisinin.svgartemisinin
“Artemisinin reacts with iron to form free radicals that kill cells. Since cancer cells uptake relatively larger amounts of iron than normal cells, they are more susceptible to the toxic effect of artemisinin. In previous research, we have shown that artemisinin is more drawn to cancer cells than to normal cells. In the present research, we covalently attached artemisinin to the iron-carying plasma glycoprotein transferrin.Transferrin is transported into the cells via receptor-mediated endocytosis and cancer cells express significantly more transferrin receptors on their cell surface and endocytose more transferrin than normal cells. Thus, we hypothesize that by tagging artemisinin to transferrin, both iron and artemisinin would be transported into cancer cells in one package. Once inside a cell, iron is released and can readily react with artemisinin close by tagged to the transferrin. This would enhance the toxicity and selectivity of artemisinin towards cancer cells. We found that holotransferrin-tagged artemisinin, when compared with artemisinin, was very potent and selective in killing cancer cells. Thus, this ‘tagged-compound’ could potentially be developed into an effective chemotherapeutic agent for cancer treatment.” 

Wormwood

Other common name(s): absinthium, absinth wormwood

Scientific/medical name(s): Artemisia absinthium

Description

Wormwood is a shrubby perennial plant whose upper shoots, flowers, and leaves are used in herbal remedies and as a bitter flavoring for alcoholic drinks. It is native to Europe, northern Africa, and western Asia, and now also grows in North America.

Overview

Available scientific evidence does not support claims that wormwood is effective in treating cancer, the side effects of cancer treatment, or any other conditions. The plant contains a volatile oil with a high level of thujone (see Thuja). There are reports that taking large doses of wormwood internally can cause serious problems with the liver and kidneys. It can also cause nausea, vomiting, stomach pain, headache, dizziness, seizures, numbness of the legs and arms, delirium, and paralysis.

Wormwood, or Artemisia absinthium, should not be confused with sweet wormwood, or Artemisia annua. Although wormwood is related to sweet wormwood, they are used in different ways. Extracts of sweet wormwood have been used in traditional herbal medicine, and an active ingredient, artemisinin, is now used in conventional medical treatment of malaria.

How is it promoted for use?

Wormwood is promoted as a sedative and anti-inflammatory. There are also claims that it can treat loss of appetite, stomach disorders, and liver and gallbladder complaints. In folk medicine it is used for a wide range of stomach disorders, fever, and irregular menstruation. It is also used to fight intestinal worms. Externally, it is applied to poorly healing wounds, ulcers, skin blotches, and insect bites. It is used in Moxibustion treatments for cancer (seeMoxibustion). Available scientific evidence does not support these claims.

What does it involve?

Wormwood is taken in small doses for a short period of time, usually a maximum of 4 weeks. It is available as a capsule and as a liquid that can be added to water to make a tincture. The whole herb is sometimes brewed as a tea. Wormwood oil, washes, or poultices can also be used on the skin. Although pure wormwood is not available, “thujone-free” wormwood extract has been approved by the US Food and Drug Administration (FDA) for use in foods and as a flavoring in alcoholic drinks such as vermouth.

What is the history behind it?

Artemisia absinthium was used by Hippocrates, and the earliest references to wormwood in Western civilization can be found in the Bible. Extract of wormwood was also used in ancient Egypt. The herb is mentioned often in first-century Greek and Roman writings and reportedly was placed in the sandals of Roman soldiers to help soothe their sore feet. It was taken as a treatment for tapeworms as far back as the Middle Ages.

In 1797, Henri Pernod developed absinthe, an alcoholic drink containing distilled spirits of wormwood, fennel, anise and sometimes other herbs. Absinthe became very popular in Europe and the United States in the nineteenth century. It was eventually banned in several countries in the early twentieth century due to its purported ill effects and addictive qualities. More recent analysis has suggested that, when properly prepared and distilled, the thujone content in these drinks was very low. It appears more likely that the addictiveness and other ill effects of absinthe were due to its alcohol content, which is around 60% to 85%. Varying additives or impurities from different distillers may have also produced some of these effects. Even though absinthe is illegal in some countries, various types can be found in some European countries. However, their thujone content is strictly limited. Wormwood is also an ingredient in vermouth and other drinks.

What is the evidence?

Available scientific studies do not support the use of wormwood for the treatment of cancer or the side effects of conventional cancer treatment. There is not enough evidence available to support its use for other conditions. Wormwood oil has been tested in laboratory studies and appears to inhibit the growth of some fungi. However, human tests have not been completed.

Some derivatives of Artemisia annua, or sweet wormwood, a relative of wormwood, have been shown to be effective in the treatment of malaria. In fact, the World Health Organization approved artemisinin for use against malaria in Africa in 2004. These extracts also show some promise in laboratory studies as cancer treatment drugs. Further studies are required to find out whether the anti-cancer results apply to people. It is important to remember that extracted compounds are not the same as the whole herb, and study results are not likely to show the same effects.

Are there any possible problems or complications?

This product is sold as a dietary supplement in the United States. Unlike companies that produce drugs (which must be tested before being sold), the companies that make supplements are not required to prove to the Food and Drug Administration that their supplements are safe or effective, as long as they don’t claim the supplements can prevent, treat, or cure any specific disease.
Some such products may not contain the amount of the herb or substance that is on the label, and some may include other substances (contaminants). Actual amounts per dose may vary between brands or even between different batches of the same brand. In 2007, the FDA wrote new rules to improve the quality of manufacturing for dietary supplements and the proper listing of supplement ingredients. But these rules do not address the safety of the ingredients or their effects on health.
Most such supplements have not been tested to find out if they interact with medicines, foods, or other herbs and supplements. Even though some reports of interactions and harmful effects may be published, full studies of interactions and effects are not often available. Because of these limitations, any information on ill effects and interactions below should be considered incomplete.

Wormwood should be avoided, especially by women who are pregnant or breast-feeding, by people who have had seizures, and by those with ulcers or stomach irritation. Thujone, a component of wormwood, is known to cause muscle spasms, seizures, and hallucinations if taken internally. In high doses it is known to damage the liver and the kidneys.

Because of its thujone content, large doses of wormwood taken internally can lead to vomiting, stomach and intestinal cramps, headaches, dizziness, nervous system problems, and seizures. Wormwood can also lead to liver failure. The New England Journal of Medicine reported that a man who ordered essential oil of wormwood over the Internet, thinking he had purchased absinthe, suffered liver failure shortly after drinking the oil. Wormwood may also make seizures more likely and may interfere with the anti-convulsant effects of medicines such as phenobarbital.

The plant is a relative of ragweed and daisies. Those with allergies to these types of plants may also be allergic to wormwood. Contact with wormwood can cause rash in some people.

Relying on this type of treatment alone and avoiding or delaying conventional medical care for cancer may have serious health consequences.

Share

Oncolytic Drugs …Preparation of (4-{4-[({3-tert-butyl-1-[3-(hydroxymethyl)phenyl]-1H-pyrazol-5-yl}carbamoyl)amino]-3-fluorophenoxy}-N-methylpyridine-2-carboxamide)

 cancer  Comments Off on Oncolytic Drugs …Preparation of (4-{4-[({3-tert-butyl-1-[3-(hydroxymethyl)phenyl]-1H-pyrazol-5-yl}carbamoyl)amino]-3-fluorophenoxy}-N-methylpyridine-2-carboxamide)
Jan 212014
 


Patents–  EP2111401B1

1036712-77-2 cas NO

see also WO 2008079968 BAYER

VEGFR-2 (FLK-1/KDR) Inhibitors
Bcr-Abl Kinase Inhibitors
HGFR (MET; c-Met) Inhibitors 

Inhibitors of protein kinases, such as wild-type and mutations of Bcr-Abl, Flk1, c-Met, expected to be useful for the treatment of hyperproliferative and/or angiogenesis disorders such as cancer. A representative compound suppressed Flk-1, c-Met and wild type and T135I mutant Bcr-Abl enzymes with IC50 values below 1 mcM. Compound also inhibited the proliferation of K562 (IC50 = 1.58 nM) and BAF3 cells expressing wild-type and T315I, E255K, M351T and Y253F mutant Brc-Abl enzymes (IC50 = 3.84, 34.1, 503, 811 and 564 nM, respectively).


Example 1HYDROXY METHYL PHENYL PYRAZOLYL UREA (4-{4-[({3-tert-Butyl-1-[3-(hydroxymethyl)phenyl]-1H-pyrazol-5-yl}carbamoyl)amino]-3-fluorophenoxy}-N-methylpyridine-2-carboxamide)

    • Figure imgb0001

HYDROXY METHYL PHENYL PYRAZOLYL UREAStep 1. Preparation of ethyl 3-(5-amino-3-tert-butyl-1H-pyrazol-1-yl)benzoate

    • Figure imgb0002
    • Sulfuric acid (concentrated, 15.7 mL, 295.7 mmol) was carefully added drop-wise to cold EtOH (600 mL) with stirring. To this, 3-hydrazinobenzoic acid (45 g, 295.7 mmol) and 4,4-dimethyl-3-oxopentanenitrile (40.7 g, 325.3 mmol) were added and then the mixture was heated at 90°C for 48 h. Most of the solvent was evaporated at reduced pressure, and the residual mixture was diluted with ethyl acetate. The resulting mixture was washed with ice cold 2M NaOH followed by brine, and dried (Na2SO4). The solution was filtered through a bed of silica gel, washing with more ethyl acetate. Evaporation of ethyl acetate and treatment of the residue with dichloromethane/hexanes gave the product as an off-white crystalline solid (61 g, 71%). MS mlz 288.2 (M+H)+; calcd. mass 287. Retention time (LC-MS): 2.99 min. 1H-NMR (DMSO-d6): δ 8.16 (m 1H); 7.88 (m, 2H); 7.60 (t, 1H); 5.40 (s, 1H); 5.32 (s, 2H); 4.36 (q, 2H); 1.34 (t, 3H); 1.21 (s, 9H).

Step 2. Preparation of ethyl 3-{3-tert-butyl-5-[(phenoxycarbonyl)amino]-1H-pyrazol-1-yl}-benzoate

    • Figure imgb0003
    • To a mixture of ethyl 3-(5-amino-3-tert-butyl-1H-pyrazol-1-yl)benzoate (60 g, 208.8 mmol) and K2CO3 (86.6 g, 626.4 mmol) in THF (1400 mL) was added phenyl chloroformate (98.1 g, 626.4 mmol). The reaction was stirred at room temperature overnight. The solid was removed by filtration and most of the solvent was evaporated under reduced pressure. The residual mixture was dissolved in EtOAc and washed with brine, then water. The organic layer was then dried and concentrated. The crude product was purified by recrystallization from CH2Cl2/hexanes to give the desired product as a white powder (78.5 g, 92%). MS m/z 408.1 (M+H)+; calcd. mass 407. Retention time (LC-MS): 3.92 min. 1H-NMR (DMSO-d6): δ 10.19 (s, broad, 1H); 8.11 (m 1H); 7.97 (d, J = 7.6 Hz, 1H); 7.86 (m, 1H); 7.71 (t, 1H); 7.38 (m, 2H); 7.24 (m, 1H); 7.08 (m, 1H); 6.40 (s, 1H); 4.38 (q, 2H); 1.32 (t, 3H); 1.29 (s, 9H).

Step 3. Preparation of ethyl 3-(3-tert-butyl-5-{[(2-fluoro-4-{[2-(methylcarbamoyl)pyridin-4-yl]-oxy}phenyl)carbamoyl]amino}-1H-pyrazol-1-yl)benzoate

    • Figure imgb0004
    • A solution of ethyl 3-{3-tert-butyl-5-[(phenoxycarbonyl)amino]-1H-pyrazol-1-yl}benzoate (9.36 g, 22.0 mmol), 4-(4-amino-3-fluorophenoxy)-N-methylpyridine-2-carboxamide (5.0 g, 19.1 mmol; prepared as described in Dumas et al., PCT Int. Appl. WO 2004078748 (2004 )) and triethyl amine (3.87 g, 38.3 mmol) in anhydrous THF (100 mL) was stirred at room temperature overnight. The crude product was purified by column chromatography (CH2Cl2 plus 1% to 3% of 2M NH3 in MeOH), followed by recrystallization from EtOAc/hexanes to give the desired product as an off-white crystalline solid (6.32 g, 57%). MS m/z 575.1 (M+H)+; calcd. mass 574. Retention time (LC-MS): 3.75 min.1H-NMR (DMSO-d6): δ 8.97 (m, 1H); 8.89 (m, 1H); 8.80 (m, 1H); 8.52 (d, J = 5.6 Hz, 1H); 8.16 (t, 1H); 8.06 (m, 1H); 7.99 (m, 1H); 7.85 (m, 1H); 7.71 (t, 1H); 7.39 (m, 1H); 7.33 (m, 1H); 7.17 (m, 1H); 7.06 (m, 1H); 6.42 (s, 1H); 4.36 (q, 2H); 2.78 (d, J = 5.2 Hz, 3H); 1.31 (m, 12H).

Step 4. Preparation of (4-{4-[({3-tert-butyl-1-[3-(hydroxymethyl)phenyl]-1H-pyrazol-5-yl}carbamoyl)amino]-3-fluorophenoxy}-N-methylpyridine-2-carboxamide)

  • Figure imgb0005
  • To a well-stirred cooled solution of 4-(4-{3-[5-tert-butyl-2-(3-ethoxycarbonyl-phenyl)-2H-pyrazol-3-yl]-ureido}-3-fluoro-phenoxy)-pyridine-2-carboxylic acid methylamide (56 mg, 0.1 mmol) in ethanol (10 mL), NaBH4 (50 mg) was added in portions. After 14 h, ice water (10 mL) was carefully added to the reaction mixture. Then, most of the ethanol was evaporated under reduced pressure. The residual mixture was treated with saturated aqueous ammonium chloride solution (10 mL) and extracted three times with dichloromethane (50, 25, and 25 mL). The combined dichloromethane extract was dried (sodium sulfate) and the solvent was evaporated. The crude product was purified by preparative thin layer chromatography on silica gel using 3-5% 2M ammonia in methanol in dichloromethane as the eluent to yield the desired product as a white powder (31 mg, 58%).
    For a larger scale synthesis, the following similar procedure was followed: To a solution of ethyl 3-(3-tert-butyl-5-{[(2-fluoro-4-{[2-(methylcarbamoyl)pyridin-4-yl]oxy}phenyl)carbamoyl]-amino}-1H-pyrazol-1-yl)benzoate (11.2 g, 19.5 mmol) in EtOH was added NaBH4 stepwise as a solid. The reaction was then stirred at room temperature overnight, and then quenched by gradual addition of aqueous NH4Cl. The mixture was diluted with EtOAc, washed with aq. NH4Cl, followed by brine. The organic layer was then dried and concentrated. The crude product was then purified by column chromatography on silica gel (CH2Cl2 plus 1 to 5% of 2M NH3 in MeOH), followed by recrystallization from dichloromethane/hexanes to give the desired product as a white crystalline solid (8.0 g, 77%). Mp 160 ºC; after further recrystallization, desired product was obtained with mp 196 ºC.
  •  MS m/z 533.3 (M+H)+; calcd. mass 532. Retention time (LC-MS): 3.13 min.
  •  1H-NMR (DMSO-d6): δ 9.02 (s, broad, 1H); 8.87 (s, 1H); 8.81 (m, 1H); 8.52 (d, J= 5.2 Hz, 1H); 8.21 (t, 1H); 7.51 (m, 2H); 7.39 (m, 3H); 7.32 (m, 1H); 7.17 (m, 1H); 7.06 (m, 1H); 6.40 (s, 1H); 5.36 (t, 1H); 4.59 (d, J = 5.6 Hz, 2H); 2.78 (d, J = 4.8 Hz, 3H); 1.27 (s, 9H).
  • Elemental Analysis: C 62.92%; H 5.43%; N 15.70%; calcd. C 63.15%; H 5.49%; N 15.78%.
Share

London University discovers vital clue to how cancer spreads

 new drugs  Comments Off on London University discovers vital clue to how cancer spreads
Jun 182013
 
Cancer cell

Researchers at University College London have made a key discovery about how cancer spreads through the body, which could lead to drugs being developed to halt the process.

Scientists at the university carried out experiments on frog and zebrafish embryos and discovered a mechanism called ‘chase and run’ that showed how diseased and healthy cells follow each other around the body, reports The Telegraph.

http://www.pharmaceutical-technology.com/news/newslondon-university-discovers-vital-clue-to-how-cancer-spreads?WT.mc_id=DN_News

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: