Tout sur les médicaments הכל על תרופות كل شيئ عن الأدوية Все о наркотиках 关于药品的一切 డ్రగ్స్ గురించి అన్ని 마약에 관한 모든 것 Όλα για τα Ναρκωτικά Complete Tracking of Drugs Across the World by Dr Anthony Melvin Crasto, Worldpeacepeaker, worlddrugtracker, PH.D (ICT), MUMBAI, INDIA, Worlddrugtracker, Helping millions, 9 million hits on google on all websites, 2.5 lakh connections on all networks, “ALL FOR DRUGS” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This is a compilation for educational purposes only. P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent
ALL ABOUT DRUGS, LIVE, BY DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER, HELPING MILLIONS, 9 MILLION HITS ON GOOGLE, PUSHING BOUNDARIES,2.5 LAKH PLUS CONNECTIONS WORLDWIDE, 18 LAKH PLUS VIEWS ON THIS BLOG IN 216 COUNTRIES, THE VIEWS EXPRESSED ARE MY PERSONAL AND IN NO-WAY SUGGEST THE VIEWS OF THE PROFESSIONAL BODY OR THE COMPANY THAT I REPRESENT, USE CTRL AND+ KEY TO ENLARGE BLOG VIEW……………………A 90 % PARALYSED MAN IN ACTION FOR YOU, I AM SUFFERING FROM TRANSVERSE MYLITIS AND BOUND TO A WHEEL CHAIR, WITH DEATH ON THE HORIZON, I HAVE LOT TO ACHEIVE
Keminntek Laboratories is a Hyderabad (India) based Contract Research Organization in Pharmaceutical sector in specific Pharmaceutical Intermediates, Speciality Chemicals, Impurities and Active Pharmaceutical Ingredients. Promoters of Keminntek Laboratories are Young and Dynamic Technocrats and established with a vision to provide a best-in class pharmaceutical services. Keminntek Laboratories would be a value-added and innovative-in –approach business partner. It has a strong talent pool of qualified and experienced scientists drawn from the national and international institutes and industry. It has a capability to synthesize in mg to multi-kg scale.
About Us
Vision
Our vision is to build Keminntek Laboratories into a world class leading pharmaceutical service provider based on innovation while keeping health and prosperity in mind. Imperatively, we will continue our business with high standards of ethics in the interest of society and environment.Mission
We are committed towards improving people’s health through science and innovation. Our mission is to provide better access of the affordable medicines to the patients and positively impact prosperity.
Team
Promoters of this company are very well qualified and experienced personalities in Pharmaceutical sector
We have a team consisting
Ph.Ds from premier Indian Institutes and postdocs from abroad
M. Sc (Chemistry) with 2-12 years pharmaceutical industry experience
Our team expertise lies in process R&D of pharmaceutical intermediates, NCEs (Medicinal Chemistry) development, pharmaceutical impurities, and custom synthesis of specialty chemicals
cancer, new drugs, spectroscopy, SYNTHESISComments Off on Dr. Vinayak Pagar( GUEST BLOGGER) Development of a Povarov Reaction/Carbene Generation Sequence for Alkenyldiazocarbonyl Compounds
Metal-catalyzed cycloadditions of alkenyldiazo reagents are useful tools to access carbo- and heterocycles.[1] These diazo compounds are chemically sensitive toward both Brønsted orLewis acids. Their reported cycloadditions rely heavily on the formation of metal carbenes to initiate regio- and stereoselective [3+n] cycloadditions (n=2–4) with suitable dipolarophiles.[2–4] A noncarbene route was postulated for a few copper-catalyzed cycloadditions of these diazo species, but they resulted in complete diazo decomposition.[3a, 4a, 5] oyle and co-workers reported[4a] a [3+2] cycloaddition of the alkenylrhodium carbene A with imines to give dihydropyrroles (Scheme 1a). We proposed a cycloaddition the tetrahydroquinoline derivatives 3 and 3’, as well as the tetrahydro-1H-benzo[b]azepine species 4. Access to these frameworks are valuable
Access to these frameworks are valuable for the preparation of several bioactive molecules including 2-phenyl-2,3-
dihydroquinolone,[8a] L-689,560,[8b] torcetrapib,[8c] martinellic acid,[8d] OPC-31260,[8e] OPC-51803,[8f] and tetraperalone A (Figure 1).[8g] Their specific biological functions have been well documented.[8]
Spectral data for ethyl 2-diazo-2-(2-phenyl-1,2,3,4-tetrahydroquinolin-4-yl) acetate (2a)
†We thank the National Science Council, Taiwan, for financial support of this work., [*] A. M. Jadhav, V. V. Pagar, Prof. Dr. R.-S. Liu
Department of Chemistry, National Tsing Hua University
Hsinchu (30013) (Taiwan)
E-mail: rsliu@mx.nthu.edu.tw
Abstract
Rings aplenty: A HOTf-catalyzed (Tf=trifluoromethanesulfonyl) Povarov reaction of alkenyldiazo species has been developed and delivers diazo-containing cycloadducts stereoselectively (see scheme). The resulting cycloadducts provide access to six- and seven-membered azacycles through the generation of metal carbenes as well as the functionalization of diazo group.
[1] Selected reviews: a) M. P. Doyle,M. A. McKervy, T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998; b) A. Padwa, M. D. Weingarten, Chem. Rev. 1996, 96, 223; c) H. M. L. Davies, J. R. Denton, Chem. Soc. Rev. 2009, 38, 3061; d) M. P. Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev. 2010, 110, 704; e) H. M. L. Davies, D. Morton, Chem. Soc. Rev. 2011, 40, 1857; f) Z. Zhang, J. Wang, Tetrahedron
2008, 64, 6577.
[2] Selected examples for carbocyclic cycloadducts, see: a) L. Deng, A. J. Giessert, O. O. Gerlitz, X. Dai, S. T. Diver, H. M. L. Davies, J. Am. Chem. Soc. 2005, 127, 1342; b) H. M. L. Davies, Adv. Cycloaddit. 1999, 5, 119; c) H. M. L. Davies, B. Xing, N. Kong, D. G. Stafford, J. Am. Chem. Soc. 2001, 123, 7461; d) H. M. L. Davies, T. J. Clark, H. D. Smith, J. Org. Chem. 1991, 56, 3819; e) Y. Liu, K. Bakshi, P. Zavalij, M. P. Doyle, Org. Lett. 2010, 12, 4304; f) J. P. Olson, H. M. L. Davies, Org. Lett. 2008, 10, 573.
[3] For oxacyclic cycloadducts, see: a) X. Xu, W.-H. Hu, P. Y. Zavalij, M. P. Doyle, Angew. Chem. 2011, 123, 11348; Angew. Chem. Int. Ed. 2011, 50, 11152; b) M. P. Doyle, W. Hu, D. J. Timmons, Org. Lett. 2001, 3, 3741.
[4] For azacyclic cycloadducts, see selected reviews: a) M. P. Doyle, M. Yan, W. Hu, L. Gronenberg, J. Am. Chem. Soc. 2003, 125, 4692; b) J. Barluenga, G. Lonzi, L. Riesgo, L. A. Lpez, M. Tomas, J. Am. Chem. Soc. 2010, 132, 13200; c) M. Yan, N. Jacobsen, W. Hu, L. S. Gronenberg, M. P. Doyle, J. T. Colyer, D. Bykowski, Angew. Chem. 2004, 116, 6881; Angew. Chem. Int. Ed. 2004, 43, 6713; d) X.Wang, X. Xu, P. Zavalij, M. P. Doyle, J. Am.
Chem. Soc. 2011, 133, 16402; e) Y. Lian, H. M. L. Davies, J. Am. Chem. Soc. 2010, 132, 440; f) X. Xu, M. O. Ratnikov, P. Y. Zavalij, M. P. Doyle, Org. Lett. 2011, 13, 6122; g) V. V. Pagar, A. M. Jadhav, R.-S. Liu, J. Am. Chem. Soc. 2011, 133, 20728; h) R. P. Reddy, H. M. L. Davies, J. Am. Chem. Soc. 2007, 129, 10312.
[5] Y. Qian, X. Xu, X.Wang, P. Zavalij,W. Hu, M. P. Doyle, Angew. Chem. 2012, 124, 6002; Angew. Chem. Int. Ed. 2012, 51, 5900.
[6] Povarov reactions refer to the formal [4+2] cycloadditions of Naryl imines with enol ethers or enamines. See reviews: a) L. S. Povarov, Russ. Chem. Rev. 1967, 36, 656; b) V. V. Kouznetsov, Tetrahedron 2009, 65, 2721; c) D. Bello, R. Ramn, R. Lavilla, Curr. Org. Chem. 2010, 14, 332; d) M. A. McCarrick, Y. D. Wu, K. N. Houk, J. Org. Chem. 1993, 58, 3330; e) A. Whiting, C. M. Windsor, Tetrahedron 1998, 54, 6035.
[7] For Povarov reactions catalyzed by Brønsted acids, see selected examples: a) H. Xu, S. J. Zuend, M. G. Woll, Y. Tao, E. N. Jacobson, Science 2010, 327, 986; b) T. Akiyama, H. Morita, K. Fuchibe, J. Am. Chem. Soc. 2006, 128, 13070; c) H. Liu, G. Dagousset, G. Masson, P. Retailleau, J. Zhu, J. Am. Chem. Soc. 2009, 131, 4598; d) G. Dagousset, J. Zhu, G. Masson, J. Am. Chem. Soc. 2011, 133, 14804; e) H. Ishitani, S. Kobayashi, Tetrahedron Lett. 1996, 37, 7357; f) G. Bergonzini, L. Gramigna, A. Mazzanti, M. Fochi, L. Bernardi, A. Ricci, Chem. Commun.
2010, 46, 327; g) L. He, M. Bekkaye, P. Retailleau, G. Masson, Org. Lett. 2012, 14, 3158.
[8] a) Y. Xia, Z.-Y. Yang, P. Xia, K. F. Bastow, Y. Tachibana, S.-C. Kuo, E. Hamel, T. Hackl, K.-H. Lee, J. Med. Chem. 1998, 41, 1155; b) R.W. Carling, P. D. Leeson, A. M. Moseley, J. D. Smith, K. Saywell, M. D. Trickelbank, J. A. Kemp, G. R. Marshall, A. C. Foster, S. Grimwood, Bioorg. Med. Chem. Lett. 1993, 3, 65;
c) D. B. Damon, R. W. Dugger, R.W. Scott, U.S. Patent 6,689,897, 2004; d) D. A. Powell, R. A. Batey, Org. Lett. 2002, 4, 2913; e) A. Matsuhisa, K. Kikuchi, K. Sakamoto, T. Yatsu, A. Tanaka, Chem. Pharm. Bull. 1999, 47, 329; f) M. Y. Christopher, E. A. Christine, D. M. Ashworth, J. Barnett, A. J. Baxter, J. D. Broadbridge, R. J. Franklin, S. L. Hampton, P. Hudson, J. A. Horton, P. D. Jenkins, A. M. Penson, G. R.W. Pitt, P. Rivire,
P. A. Robson, D. P. Rooker, G. Semple, A. Sheppard, R. M.Haigh, M. B. Roe, J. Med. Chem. 2008, 51, 8124; g) C. Li, X. Li, R. Hong, Org. Lett. 2009, 11, 4036.
About author( Me)
Dr. Vinayak Pagar
Postdoctoral Research Fellow at The Ohio State University
Vinayak Vishnu Pagar was born in Nasik, Maharashtra (India) in 1983. He obtained his BSc and MSc degrees in chemistry from the University of Pune (India) in 2004 and 2006, respectively. From 2006–2010, he worked as Research Associate in pharmaceutical companies like Jubilant Chemsys Ltd. and Ranbaxy Laboratories Ltd. (India). In 2010, he joined the group of Professor Rai-Shung Liu to pursue his PhD degree in National Tsing Hua University (Taiwan) and completed it in 2014. Subsequently, he worked as a postdoctoral fellow in the same group for one year. Currently, he is working as a Research Scientist at The Ohio State University, Columbus, Ohio USA. His research focused on the development of new organic reactions by using transition-metal catalysis such Gold, Silver, Rhodium, Zinc, Cobalt, Nickel and Copper metals which enables mild, diastereoselective, enantioselective and efficient transformations of variety of readily available substrates to wide range of synthetically useful nitrogen and oxygen containing heterocyclic products which are medicinally important. He published his research in a very high impact factor international Journals includes J. Am. Chem. Soc., Angew. Chem. Int. Ed.,J. Org. Chem., Chem- A. Eur. Journal, Org. Biomol. Chem., and Synform (Literature Coverage).
Organic Chemists from Industry and academics to Interact on Spectroscopy Techniques for Organic Compounds ie NMR, MASS, IR, UV Etc. Starters, Learners, advanced, all alike, contains content which is basic or advanced, by Dr Anthony Melvin Crasto, Worlddrugtracker.