AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

Synthesis of 2-[4-(4-Chlorophenyl)piperazin-1-yl]-2-methylpropanoic Acid Ethyl Ester

 spectroscopy, SYNTHESIS, Uncategorized  Comments Off on Synthesis of 2-[4-(4-Chlorophenyl)piperazin-1-yl]-2-methylpropanoic Acid Ethyl Ester
Dec 202016
 
str1
2-[4-(4-Chlorophenyl)piperazin-1-yl]-2-methylpropanoic Acid Ethyl Ester
1-Piperazineacetic acid, 4-(4-chlorophenyl)-α,α-dimethyl-, ethyl ester
2-[4-(4-Chlorophényl)-1-pipérazinyl]-2-méthylpropanoate d‘éthyle
Ethyl 2-[4-(4-chlorophenyl)-1-piperazinyl]-2-methylpropanoate
Ethyl-2-[4-(4-chlorphenyl)-1-piperazinyl]-2-methylpropanoat
1206769-44-9
2-[4-(4-Chlorophenyl)piperazin-1-yl]-2-methylpropanoic Acid Ethyl Ester (en)
AGN-PC-0JIRMK
AKOS016034964
ethyl 2-[4-(4-chlorophenyl)piperazin-1-yl]-2-methylpropanoate
MWt310.819
MFC16H23ClN2O2
Image result for MOM CAN TEACH YOU NMRNMR IS EASY
1H NMR PREDICT
 str0
ACTUAL VALUES……..1H NMR (400 MHz, CDCl3): δ ppm 1.27 (t, 3H, J = 7.2 Hz, -CH2-CH3), 1.35 (s, 6H, 2 x CH3), 2.74-2.76 (m, 4H, J = 4.8 Hz, -CH2-N-CH2-), 3.14-3.17 (m, 4H, J = 4.8 Hz, -CH2-N-CH2-), 4.20 (q, 2H, J = 7.2 Hz, -CH2-CH3), 6.81-6.83 (d, 2H, J = 6.8 Hz, phenyl protons), 7.17-7.20 (d, 2H, J = 6.8 Hz, phenyl protons).
str1
13C NMR PREDICT
str2
ACTUAL VALUES……..13C NMR (100 MHz, CDCl3): δ ppm 14.3 (CH3), 22.7 ((CH3)2), 46.6 (-CH2-N-CH2-), 49.7 (-CH2-N-CH2-), 60.5 (O-CH2), 62.4 (N-C-), 117.0, 124.3, 128.8, 149.8 (aromatic carbons), 174.3 (C=O).
str3
Paper

To a solution of 4-(4-chlorophenyl)piperazine dihydrochloride 1 (5.0 g, 0.0185 mol) in DMSO (30 ml), anhydrous cesium carbonate (30.0 g, 0.0925 mol), sodium iodide (1.39 g, 0.0093 mol) and ethyl 2-bromo-2-methylpropanoate 2 (3.97 g, 0.02 mol) were added. The resulting mixture was stirred at 25-30oC for 12 hours. The reaction mass was diluted with water (200 ml) and extracted with ethyl acetate (2 x 200 ml). The ethyl acetate layer was washed with water (2 x 100 ml), dried over anhydrous sodium sulfate (10.0 g) and concentrated under vacuum. The crude product thus obtained was purified by column chromatography (stationary phase silica gel 60-120 mesh; mobile phase 10% ethyl acetate in hexane). The title compound 3 was obtained as a white solid (4.73 g, 82 %).

Molbank 2009 m607 i001
Melting Point: 56oC.
EI-MS m/z (rel. int. %): 311 (100) [M+1]+, 236(40), 197(60), 154(45).
IR ν max (KBr) cm-1: 2839-2996 (C-H aliphatic); 1728 (C=O), 1595, 1505 (C=C aromatic), 1205 (C-O bending), 758 (C-Cl bending).
1H NMR (400 MHz, CDCl3): δ ppm 1.27 (t, 3H, J = 7.2 Hz, -CH2-CH3), 1.35 (s, 6H, 2 x CH3), 2.74-2.76 (m, 4H, J = 4.8 Hz, -CH2-N-CH2-), 3.14-3.17 (m, 4H, J = 4.8 Hz, -CH2-N-CH2-), 4.20 (q, 2H, J = 7.2 Hz, -CH2-CH3), 6.81-6.83 (d, 2H, J = 6.8 Hz, phenyl protons), 7.17-7.20 (d, 2H, J = 6.8 Hz, phenyl protons).
13C NMR (100 MHz, CDCl3): δ ppm 14.3 (CH3), 22.7 ((CH3)2), 46.6 (-CH2-N-CH2-), 49.7 (-CH2-N-CH2-), 60.5 (O-CH2), 62.4 (N-C-), 117.0, 124.3, 128.8, 149.8 (aromatic carbons), 174.3 (C=O).
Elemental analysis: Calculated for C16H23ClN2O2: C, 61.83%, H, 7.46%, N, 9.01%; Found: C, 61.90%, H, 7.44%, N, 8.98%.
Molbank 2009, 2009(3), M607; doi:10.3390/M607

Synthesis of 2-[4-(4-Chlorophenyl)piperazin-1-yl]-2-methylpropanoic Acid Ethyl Ester

1Department of Chemistry, Sambalpur University, JyotiVihar-768019, Orissa, India
2Institute of Chemical Technology (ICT), Matunga, Mumbai-400019, Maharashtra, India
*Author to whom correspondence should be addressed.
Received: 17 May 2009 / Accepted: 30 June 2009 / Published: 27 July 2009
Bijay K Mishra

Professor at Sambalpur University, Chemistry Department

Abstract

The title compound was synthesized by N-alkylation of 4-(4-chlorophenyl)piperazine with ethyl 2-bromo-2-methylpropanoate and its IR, 1H NMR, 13C NMR and Mass spectroscopic data are reported.

 

/////////

CCOC(=O)C(N1CCN(CC1)c1ccc(cc1)Cl)(C)C

Share

Innogen summit India 2016, 18-19 Aug, Mumbai, India

 CONFERENCE  Comments Off on Innogen summit India 2016, 18-19 Aug, Mumbai, India
Aug 192016
 

 

i1Innogen summit India 2016, 18-19 Aug, Mumbai, India, HOTEL HOLIDAY INN, Mumbai International Airport,Organised by Inventicon Business Intelligence Pvt. Ltd………topic is Supergenerics, Innovation in Generics, commercialization, regulatory, other insights,

 

A0 a1

Dr. Ashok Kumar, President – Centre for Research & Development, Ipca Laboratories Ltd, at Innogen summit India 2016, 18-19 Aug, Mumbai, India,, HOTEL HOLIDAY INN, Mumbai International Airport,Organised by Inventicon Business Intelligence Pvt. Ltd — with DR ASHOK KUMAR OF IPCA at Holiday Inn-Mumbai Intl Airport.

 

A2

PANEL DISCUSSION, Dr. Ashok Kumar, President – Centre for Research & Development, Ipca Laboratories Ltd , Dr. Nilima A. Kshirsagar, National Chair Clinical Pharmacology, ICMR Government of India, Yugal Sikri, Chairman – Pharmaceutical Management, School of Business Management, SVKM’s Narsee Monjee Institute of Management Studies — with Yugal Sikri,, Nilima A. Kshirsagarand ASHOK KUMAR OF IPCA at Holiday Inn-Mumbai Intl Airport.

ashit

Ashit sikka, Koji nakamura, Uttam kumar, allfdron TERUMO, AT Innogen summit India 2016, 18-19 Aug, Mumbai, India,, HOTEL HOLIDAY INN, Mumbai International Airport,Organised by Inventicon Business Intelligence Pvt. Ltd — with Koji nakamura of terumo, Ashit Sikka and UTTAM KUMAR OF TERUMO at Holiday Inn-Mumbai Intl Airport.

 

INNO1 INNO3

ROHAN, RIDDHI AND PALLAVI OF INVENTICON

INNO4 S2

DR NIDHI SAPKAL OF ZIMLABS

S3

ALKA LUTHRA OF LUBRIZOL

 

SEEMA1

 

DR SEEMA SINGH, VP AND HEAD,-LEGAL AND IPM, MACLOEDS PHARMA, Innogen summit India 2016, 18-19 Aug, Mumbai, India,, HOTEL HOLIDAY INN, Mumbai International Airport,Organised by Inventicon Business Intelligence Pvt. Ltd — withSeema Singh.

 

lupin cadila

standing Mr Rajeev patil, Sr VP reg affairs Lupin and Mr Sushrut kulkarni Sr VP Zydus cadila, Head, Pharma tech cemtre — with sushrut kulkarni andrajeev patil.

Thanks to

STR1

Rohan Jagtap

Program Manager – Pharma & Lifesciences

 https://ci4.googleusercontent.com/proxy/XM6zLJNVF-KyjTdLe4_K-jsjBvWCfPVibLEfkfFi-qr6U362NxG0XVUkvsdpOUKmwJgUMkzmSETrv9F_bY4Pv0rEVxiUozAcfOcwUjawrQs2stF7iWDvdLcVkMJYElp6G8kNSGlsGwZJsFOoqQTnShF3BCHD=s0-d-e1-ft#https://docs.google.com/a/inventiconasia.com/uc?id=0BxGiCo9okSEbVlRmN0xxM1dpc1E&export=download

Inventicon Business Intelligence Pvt. Ltd.

Phone: +91 22 6511 3334 I Mob: +91 9011052025 Email: rohan.jagtap@inventiconasia.com

Times Square, Unit 1, Level 2, B Wing, Andheri Kurla Road, Andheri (E), Mumbai – 400059, MS – India.

http://inventiconasia.com/About-Us.aspxgards,

AGGENDA

////////

Share

New Drug Approvals blog by Dr Anthony Crasto hits ten lakh views in 211 countries

 INDIA  Comments Off on New Drug Approvals blog by Dr Anthony Crasto hits ten lakh views in 211 countries
Dec 282015
 

flags_1

New Drug Approvals hits ten lakh views in 211 countries

http://newdrugapprovals.org/

 

ANTHONY MELVIN CRASTO

THANKS AND REGARD’S
DR ANTHONY MELVIN CRASTO Ph.D

amcrasto@gmail.com

MOBILE-+91 9323115463
GLENMARK SCIENTIST ,  INDIA
web link
shark
photo
Dr. Anthony Melvin Crasto
Principal Scientist, Glenmark Pharma
    

//////////

Share

ORGANIC SPECTROSCOPY INTERNATIONAL HAS 2 LAKH VIEWS

 spectroscopy  Comments Off on ORGANIC SPECTROSCOPY INTERNATIONAL HAS 2 LAKH VIEWS
Aug 032015
 

 

 

 

 

ORGANIC SPECTROSCOPY INTERNATIONAL HAS 2 LAKH VIEWS

 

Read by one and all in academics and industry

link is ……http://orgspectroscopyint.blogspot.in/

 

I get minimum 1000 hits in a day and all across the world

Share

ANTHONY CRASTO VENTURES INTO CHINA…..MY KAIXIN BLOG 开心网 ON MEDICINAL CHEMISTRY

 Uncategorized  Comments Off on ANTHONY CRASTO VENTURES INTO CHINA…..MY KAIXIN BLOG 开心网 ON MEDICINAL CHEMISTRY
Feb 232015
 

KAIXIN


 

 

MY EASTERN VENTURE TO PROPAGATE CHEMISTRY……………http://www.kaixin001.com/home/?_profileuid=159073878

 

CHINA

 

 

 

MY EASTERN VENTURE TO PROPAGATE CHEMISTRY……………http://www.kaixin001.com/home/?_profileuid=159073878

 

MY EASTERN VENTURE TO PROPAGATE CHEMISTRY……………http://www.kaixin001.com/home/?_profileuid=159073878

 

MY EASTERN VENTURE TO PROPAGATE CHEMISTRY……………http://www.kaixin001.com/home/?_profileuid=159073878\

 

 

 

 

 

 

 

Share

Anthony crasto’s blog New drug approvals touches 3 lakh views…….Helping millions

 Uncategorized  Comments Off on Anthony crasto’s blog New drug approvals touches 3 lakh views…….Helping millions
Jul 162014
 

link is http://newdrugapprovals.org/

 

All about Drugs, live, by DR ANTHONY MELVIN CRASTO, Worlddrugtracker, Helping millions, 7 million hits on google, pushing boundaries, one lakh plus connections worldwide, 3 lakh plus VIEWS on this blog in 193 countries

 

 

 

 

ANTHONY MELVIN CRASTO

THANKS AND REGARD’S
DR ANTHONY MELVIN CRASTO Ph.D

amcrasto@gmail.com

MOBILE-+91 9323115463
GLENMARK SCIENTIST ,  INDIA
web link
アンソニー     安东尼   Энтони    안토니     أنتوني
blogs are
 

 MY CHINA, VIETNAM  AND JAPAN BLOGS

http://me.zing.vn/u/amcrasto

ICELAND, RUSSIA, ARAB

BOBRDOBRBLAND ICELAND100zakladokadfty

GROUPS

you can post articles and will be administered by me on the google group which is very popular across the world

OPD GROUPSPACESSCOOP OCIorganic-process-development GOOGLE, TVINXMENDELEY WDTSCIPEOPLE OPD,EPERNICUS OPDSYNTHETIC ORGANIC CHEMISTRYLinkedIn group, DIIGO OPDLINKEDIN OPDWDT LINKEDINWDTI ZING

shark

 

 

 

Share this

Share

Market Opportunities Report on Poorly Soluble and Poorly Permeable Drugs

 Uncategorized  Comments Off on Market Opportunities Report on Poorly Soluble and Poorly Permeable Drugs
Jul 162014
 
AZoNano - The A to Z of Nanotechnology
Published on July 14, 2014 at 6:04 AM IN AZANO

Poor bioavailability is a major reason for compounds to fail in preclinical development. Technology Catalysts International (TCI), a leading global pharmaceutical consulting firm, has compiled and analyzed technical and market information pertaining to the delivery of poorly water soluble or poorly permeable pharmaceutical compounds.

http://www.azonano.com/news.aspx?newsID=30615

To download a complimentary excerpt of this report, go to:

http://www.technology-catalysts.com/pdf/psd7_bro.pdf

Source: http://www.technology-catalysts.com/

Share

Iloprost (ciloprost) used to treat a serious heart and lung disorder called pulmonary arterial hypertension

 orphan status  Comments Off on Iloprost (ciloprost) used to treat a serious heart and lung disorder called pulmonary arterial hypertension
Jan 132014
 

http://chem.sis.nlm.nih.gov/chemidplus/RenderImage?maxscale=30&width=300&height=300&superlistid=0078919138

Iloprost (ciloprost)

MF C22H32O4
Formula Wgt 360.5

6,9ALPHA-METHYLENE-11ALPHA,15S-DIHYDROXY-16-METHYL-PROSTA-5E,13E-DIEN-18-YN-1-OIC ACID

6,​9α-​methylene-​11α,​15S-​dihydroxy-​16-​methyl-​prosta-​5E,​13E-​dien-​18-​yn-​1-​oic acid

 

Iloprost Molecule

ILOPROST (Ventavis®) is used to treat a serious heart and lung disorder called pulmonary arterial hypertension. While iloprost inhalation solution will not cure this disorder, it is designed to improve symptoms and the quality of life. Generic iloprost inhalation solution is not yet available.

Iloprost is a second generation structural analog of prostacyclin (PGI) with about ten-fold greater potency than the first generation stable analogs, typified by carbaprostacyclin.1 Iloprost binds with equal affinity to the human recombinant IP and EP1 receptors with a Ki of 11 nM.2Iloprost constricts the isolated guinea pig ilium and fundus circular smooth muscle (an EP1 receptor preparation) as strongly as prostaglandin E2 (PGE2) itself.3 Iloprost inhibits the ADP, thrombin, and collagen-induced aggregation of human platelets with an ED50 of about 13 nM.1 In whole animals, iloprost acts as a vasodilator, hypotensive, antidiuretic, and prolongs bleeding time.4 It has been evaluated in several human clinical studies as a treatment for idiopathic pulmonary hypertension.5,6 In these studies, an aerosolized dose of 30 µg/day was effective, and doses as high as 150 µg/day for up to a year were well tolerated.

73873-87-7 CAS NO

78919-13-8 PHENACYL ESTER

Launched – 1992 bayer

Ilomedin®, Ventavis™

Iloprost.pngiloprost

An eicosanoid, derived from the cyclooxygenase pathway of arachidonic acid metabolism. It is a stable and synthetic analog of EPOPROSTENOL, but with a longer half-life than the parent compound. Its actions are similar to prostacyclin. Iloprost produces vasodilation and inhibits platelet aggregation.

BAY-q-6256 E-1030 SH-401 ZK-36374

  • BAY Q6256
  • Ciloprost
  • Iloprost
  • Iloprostum
  • Iloprostum [Latin]
  • UNII-AHG2128QW6
  • UNII-JED5K35YGL
  • Ventavis
  • ZK 00036374
  • ZK 36374

Endoprost Ilomedin Ilomédine Ventavis Iloprost is a synthetic prostacyclin analog discovered and developed by Schering AG and Berlex which has been available for more than ten years as therapy for peripheral arterial occlusive disease (PAOD), including Raynaud’s phenomenon and Buerger’s disease.

Iloprost improves blood flow, relieves the pain associated with circulatory disturbances and improves the healing of ulcers, which can develop as a result of poor arterial blood flow. Iloprost also produces vasodilatation of the pulmonary arterial bed, with subsequent significant improvement in pulmonary artery pressure, pulmonary vascular resistance and cardiac output, as well as mixed venous oxygen saturation. In 2003, Schering AG received approval in the E.U. for an inhaled formulation of iloprost (Ventavis[R]) for the treatment of primary pulmonary hypertension and the following year, the product was launched in Germany and the U.K.

Introduction on the U.S. market took place in March 2005 by CoTherix for the same indication in patients with NYHA Class III or IV symptoms. Iloprost is also available for the treatment of pulmonary hypertension and peripheral vascular disease. CoTherix had been developing a dry powder for potential use in the treatment of pulmonary hypertension; however, no recent development has been reported for this research. In Japan, phase III clinical trials are ongoing for the treatment of pulmonary arterial hypertension. In 2003, CoTherix licensed exclusive rights from Schering AG to market iloprost in the U.S. for primary pulmonary hypertension while Schering AG retained rights to the product outside the U.S. In April 2005, CoTherix established a collaborative research and development agreement with Quadrant to develop an extended-release formulation of iloprost inhalation solution. Iloprost was designated as an orphan medicinal product for the treatment of pulmonary hypertension in December 2000 by the EMEA and will fall under orphan drug protection until 2013.

The FDA has assigned to iloprost several orphan drug designations. In 1989, iloprost solution for infusion was granted orphan drug designation for the treatment of Raynaud’s phenomenon secondary to systemic sclerosis followed by another orphan drug designation in 1990 for iloprost solution for injection for the treatment of heparin-associated thrombocytopenia. In 2004, an additional orphan drug designation for iloprost inhalation solution for the treatment of pulmonary arterial hypertension was assigned.

The status has also been assigned in the E.U. for this indication. In 2012, orphan drug designation was assigned in the U.S. for the treatment of purpura fulminans in combination with eptifibatide and for the treatment of pulmonary arterial hypertension. In 2007, Cotherix was acquired by Actelion.

ILOPROST

 

 

iloprost phenacyl ester

Ventavis (TN), Iloprost phenacyl ester, Iloprost-PE, Iloprost (INN), CHEMBL138694, CHEMBL236025, AC1O6009, DAP000273, CID5311181

Molecular Formula: C30H38O5   Molecular Weight: 478.61972

2-oxo-2-phenylethyl 5-[(2Z)-5-hydroxy-4-[(1E)-3-hydroxy-4-methyloct-1-en-6-yn-1-yl]-octahydropentalen-2-ylidene]pentanoate

IMPORTANT PUBLICATIONS

Ciloprost Drugs Fut 1981, 6(11): 676

A carbohydrate approach for the formal total synthesis of the prostacyclin analogue (16S)-iloprost Tetrahedron Asymmetry 2012, 23(5): 388

Angewandte Chemie, 1981 ,  vol. 93,   12  pg. 1080 – 1081

Tetrahedron Letters, 1992 ,  vol. 33,   52  pg. 8055 – 8056

Helvetica Chimica Acta, 1986 ,  vol. 69,  7  pg. 1718 – 1727

Journal of Medicinal Chemistry, 1986 ,  vol. 29,  3  pg. 313 – 315

US5286494 A1

US 4474802

 US 2013253049

uS 2013184295

WO 1992014438

WO 1993007876

WO 1993015739

WO 1994008584

WO 2013040068

WO 2012174407

WO 2011047048

EP0011591A1 * Oct 18, 1979 May 28, 1980 Schering Aktiengesellschaft Prostane derivatives, their production and pharmaceutical compositions containing them
EP0084856A1 * Jan 19, 1983 Aug 3, 1983 Toray Industries, Inc. 5,6,7-Trinor-4, 8-inter-m-phenylene prostaglandin I2 derivatives
EP0099538A1 * Jul 11, 1983 Feb 1, 1984 Schering Aktiengesellschaft Carbacyclines, process for their preparation and their use as medicines

……………………………………

  •  5,6,7-trinor-4,8-inter-m-phenylene prostaglandin 12derivatives.
  • Prostaglandin I2, hereinafter referred to as PGI2, of

    Figure imgb0001

    was first found by J.R. Vane et.al. in 1976 and is biosynthe- sized from arachidonic acid via endoperoxide(PGH2 or PGG2) in the vascular wall. PGI2 is well known to show potent activity to inhibit platelet aggregation and to dilate peripheral blood vessels(C & EN, Dec. 20, 1976, page 17 and S. Moncade et al., Nature, 263,633(1976)).

  • [0003]
    Because of the unstable exo-enolether structure thereof, PGI2 is extremely unstable even in a neutral aqueous solution and is readily converted to 6-oxo-PGF which is almost physiologically inactive. Such instability of PGI2 is a big obstacle to its use as a drug. Furthermore, PGI2 is unstable in vivo as well and shows only short duration of action.
  • The compounds of the present invention are novel PGI2 derivatives in which the exo-enolether moiety characteristic of PGI2 is transformed into “inter-m-phenylene” moiety. In this sense the compounds may be regarded as analogs of PGI2.
  • The compounds of the present invention feature much improved stability in vitro as well as in vivo in comparison with PGI2. The compounds are highly stable even in an aqueous solution and show long duration of action in vivo. Further, the compounds have advantages over PGI2 for pharmaceutical application because they exhibit more selective physiological actions than PGI2, which has multifarious, inseperable biological activities.
  • Some prostaglandin I2 derivatives which have 5,6,7-tri- nor-4,8-inter-m-phenylene structure have already been described in publication by some of the present authors. (Kiyotaka Ohno, Hisao Nishiyama and Shintaro Nishio, U.S.P. 4,301,164 (1981)). But, the compounds of the present invention, which feature the presence of alkynyl side chain, have more potent physiological activities as well as decreased side effects than the already disclosed compounds analogous to those of the present invention.
  • It is an object of this invention to provide novel prostaglandin I2derivatives which are stable and possess platelet aggregation-inhibiting, hypotensive, anti-ulcer and other activities.

 

  • Figure imgb0004

    is named as 16-methyl-18,19-tetradehydro-5,6,7-trinor-4,8-inter-m-phenylene PGI2.

  • Alternatively, the compound of the formula (II) may be named as a derivative of butyric acid by the more formal nomenclature. In such a case, the condensed ring moiety is named after the basical structure of 1H-cyclopenta[b]benzofuran of the following formula:

    Figure imgb0005

    The term “synthetic prostacyclins” as used herein can refer to any prostacyclin that can be prepared via synthetic organic chemistry, including those prostacyclins that are also naturally occurring, such as Prostacyclin (PGI2):

     

    Figure imgf000025_0001

    which is also known as Epopreostenol.

    Thus, examples of synthetic prostacyclins include, but are not limited to: Prosta

     

    Figure imgf000025_0002

    lloprost, which has the structure:

     

    Figure imgf000025_0003

    Trepro inil (also known as Rumodolin), which has the structure:

     

    Figure imgf000025_0004

    Beraprost, which has the structure:

     

    Figure imgf000026_0001

    as well as the esters, stereoisomers, and salts thereof, or other analogues or derivatives of the recited synthetic prostacyclins, such as compounds comprising other aliphatic linker groups linking the carboxylic acid group to the cyclic components of the synthetic prostacyclins, compounds containing additional alkene and/or alkyne bonds, and/or compounds containing additional substituents on the cyclic components of the synthetic prostacyclins.

    Figure imgf000031_0001

     iloprost, in contrast to PGI.sub.2 a stable prostacyclin derivative, has been known since 1980 by European patent application EP 11591, no other prostacyclin derivative has previously been tested in this indication. It is therefore reasonable to assume that a spontaneous healing is involved in the published case.

    It has now been found, surprisingly, that iloprost is effective in the case of cerebral malaria.

    For salt formation of iloprost, inorganic and organic bases are suitable, as they are known to one skilled in the art for the formation of physiologically compatible salts. For example, there can be mentioned: alkali hydroxides, such as sodium and potassium hydroxide, alkaline-earth hydroxides, such as calcium hydroxide, ammonia, amines, such as ethanolamine, diethanolamine, triethanolamine, N-methylglucamine, morpholine, tris-(hydroxymethyl)-methylamine, etc.

    The β-cyclodextrin clathrate formation takes place according to EP 259468.

    The production of iloprost is described in detail in EP 11591.

    • Nileprost iloprost, and a process for preparing these compositions.
    • From EP 11 591 already carbacyclin derivatives of the cytoprotective effect on the gastric and intestinal mucosa, and the myocardial cytoprotection using carbacyclin derivatives is known.
    • It has now been found that iloprost (I) and Nileprost (II)

      Figure imgb0001

      and their salts with physiologically acceptable bases and cytoprotective effect in the kidney.

    • Forming salts of iloprost and Nileprost inorganic and organic bases are suitable, as are known to those skilled in the formation of physiologically compatible salts known. Examples which may be mentioned are: alkali metal hydroxides, such as sodium and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, ammonia, amines, such as ethanolamine, diethanolamine, triethanolamine, N-methylglucamine, morpholine, tris (hydroxymethyl) methylamine, etc.
    • The production of iloprost and is described in detail in EP Nileprost 2234 and EP 11591.
    ………………..
    J. Med. Chem., 1986, 29 (3), pp 313–315
    DOI: 10.1021/jm00153a001

see paper

………………………………..
The formal total synthesis of the synthetic and stable analogue of prostacyclin, (16S) iloprost is described via a convergent synthesis starting from readily available d-glucose. Julia olefination and the aldol reaction are the key steps involved in the synthesis.
Full-size image (18 K)
……………………………………
  • Used as the starting material for the method described above ketone of general formula II can be prepared by reacting an alcohol of the formula IV

    Figure imgb0006

    (EJCorey et al., J. Amer. Chem. 93, 1490 (1971)) transformed with dihydropyran in the presence of catalytic amounts of p-toluenesulfonic acid in the tetrahydropyranyl ether V.

    Figure imgb0007
  • [0026]
    Lactone V with Diisobatylauminiumnydrid reduced at -70 ° C to the lactol VI, which is converted by Wittiereaktion Triphenylphosphoniummethylen with the olefin VII. After conversion to the tosylate with p-toluenesulfonyl chloride in the presence of pyridine is obtained by reaction with potassium nitrite in the dimethylsulfoxide 9SS-configured alcohol IX, which is converted with p-toluenesulfonyl chloride in the presence of pyridine in the tosylate X. Reaction with Malonsäurediäthylester in presence of potassium tert-butoxide gives the diester XI, which is converted by decarbalkoxylation with sodium cyanide in dimethyl sulfoxide in the ester XII.

    Figure imgb0008
  • [0027]
    Oxidative cleavage of the double bond in the compound XII with Hatrium p j o dat it out in the presence of catalytic amounts of osmium tetroxide to give the aldehyde XIII, which is oxidized with Jones reagent to the acid XIV which is then esterified with diazomethane to the compound XV. By Dieckmann condensation of XV with potassium tert-butoxide in tetrahydrofuran is obtained a mixture of isomers of the ketocarboxylic acid ester XVI and XVII, which by means of a decarbalkoxylation with 1,4-diazabicyclo [2,2,2] octane in xylene converted into ketone XVIII as the only reaction product is.

    Figure imgb0009
  • [0028]
    The removal of the Tetrahydropyranylätherschutzgruppe delivers the alcohol XIX, which is esterified with benzoyl chloride in the presence of pyridine to give the ester XX.

    Figure imgb0010
  • [0029]
    Benzyläthers hydrogenolytic cleavage of a catalytic amount of acid gives the alcohol XXI, which is according to ketalization compound XXII oxidized with Collins reagent to aldehyde XXIII.
  • [0030]
    This aldehyde XXIV with a phosphonate of the general formula

    Figure imgb0011

    wherein D, E and R 2 have the meanings given above is reacted in a Olefinicrungsreaktion to a ketone of the formula XXV.

    Figure imgb0012
  • [0031]
    After reduction of the 15-keto group with zinc borohydride or sodium borohydride or reaction with alkylmagnesium bromide or alkyllithium and. Epimerentrennung obtain the 15α-alcohols XXVI (PG numbering).

    Figure imgb0013
  • [0032]
    After hydrolysis of the ester group, for example with potassium carbonate in methanol and ketal cleavage with aqueous acetic acid yields the ketone of the formula XXVII,

    Figure imgb0014
……………………………………
ANTHONY MELVIN CRASTO

THANKS AND REGARD’S

DR ANTHONY MELVIN CRASTO Ph.D GLENMARK SCIENTIST , NAVIMUMBAI, INDIA

did you feel happy, a head to toe paralysed man’s soul in action for you round the clock need help, email or call me

MOBILE-+91 9323115463
web link

I was  paralysed in dec2007, Posts dedicated to my family, my organisation Glenmark, Your readership keeps me going and brings smiles to my family

Share
Jan 092014
 

 

FAVIPIRAVIR

Toyama (Originator)

RNA-Directed RNA Polymerase (NS5B) Inhibitors

Chemical Formula: C5H4FN3O2
CAS #: 259793-96-9
Molecular Weight: 157.1

Anti-influenza compound

clinical trials  http://clinicaltrials.gov/search/intervention=Favipiravir
Chemical Name: 6-fluoro-3-hydroxy-2-pyrazinecarboxamide
Synonyms: T-705, T705, Favipiravir

T-705 is an RNA-directed RNA polymerase (NS5B) inhibitor which has been filed for approval in Japan for the oral treatment of influenza A (including avian and H1N1 infections) and for the treatment of influenza B infection.

The compound is a unique viral RNA polymerase inhibitor, acting on viral genetic copying to prevent its reproduction, discovered by Toyama Chemical. In 2005, Utah State University carried out various studies under its contract with the National Institute of Allergy and Infectious Diseases (NIAID) and demonstrated that T-705 has exceptionally potent activity in mouse infection models of H5N1 avian influenza.

T-705 (Favipiravir) is an antiviral pyrazinecarboxamide-based, inhibitor of of the influenza virus with an EC90 of 1.3 to 7.7 uM (influenza A, H5N1). EC90 ranges for other influenza A subtypes are 0.19-1.3 uM, 0.063-1.9 uM, and 0.5-3.1 uM for H1N1, H2N2, and H3N2, respectively. T-705 also exhibits activity against type B and C viruses, with EC90s of 0.25-0.57 uM and 0.19-0.36 uM, respectively. (1) Additionally, T-705 has broad activity against arenavirus, bunyavirus, foot-and-mouth disease virus, and West Nile virus with EC50s ranging from 5 to 300 uM.

Studies show that T-705 ribofuranosyl triphosphate is the active form of T-705 and acts like purines or purine nucleosides in cells and does not inhibit DNA synthesis

In 2012, MediVector was awarded a contract from the U.S. Department of Defense’s (DOD) Joint Project Manager Transformational Medical Technologies (JPM-TMT) to further develop T-705 (favipiravir), a broad-spectrum therapeutic against multiple influenza viruses.

Several novel anti-influenza compounds are in various phases of clinical development. One of these, T-705 (favipiravir), has a mechanism of action that is not fully understood but is suggested to target influenza virus RNA-dependent RNA polymerase. We investigated the mechanism of T-705 activity against influenza A (H1N1) viruses by applying selective drug pressure over multiple sequential passages in MDCK cells. We found that T-705 treatment did not select specific mutations in potential target proteins, including PB1, PB2, PA, and NP. Phenotypic assays based on cell viability confirmed that no T-705-resistant variants were selected. In the presence of T-705, titers of infectious virus decreased significantly (P < 0.0001) during serial passage in MDCK cells inoculated with seasonal influenza A (H1N1) viruses at a low multiplicity of infection (MOI; 0.0001 PFU/cell) or with 2009 pandemic H1N1 viruses at a high MOI (10 PFU/cell). There was no corresponding decrease in the number of viral RNA copies; therefore, specific virus infectivity (the ratio of infectious virus yield to viral RNA copy number) was reduced. Sequence analysis showed enrichment of G→A and C→T transversion mutations, increased mutation frequency, and a shift of the nucleotide profiles of individual NP gene clones under drug selection pressure. Our results demonstrate that T-705 induces a high rate of mutation that generates a nonviable viral phenotype and that lethal mutagenesis is a key antiviral mechanism of T-705. Our findings also explain the broad spectrum of activity of T-705 against viruses of multiple families.

favipiravir

Favipiravir also known as T-705 is an experimental anti-viral drug with activity against many RNA viruses. It, like some other experimental antiviraldrugs—T-1105 and T-1106, is apyrazinecarboxamide derivative. Favipiravir is active against influenza virusesWest Nile virusyellow fever virusfoot-and-mouth disease virus as well as other flavivirusesarenavirusesbunyavirusesand alphaviruses.[1]

The mechanism of its actions is thought to be related to the selective inhibition of viral RNA-dependent RNA polymerase. Favipiravir does not inhibit RNA of DNA synthesis in mammalian cells and is not toxic to them.[1]

  1.  Furuta, Y.; Takahashi, K.; Shiraki, K.; Sakamoto, K.; Smee, D. F.; Barnard, D. L.; Gowen, B. B.; Julander, J. G.; Morrey, J. D. (2009). “T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections”. Antiviral Research 82 (3): 95–102. doi:10.1016/j.antiviral.2009.02.198PMID 19428599edit
  2. WO 2000010569
  3. WO 2008099874
  4. WO 201009504
  5. WO 2010104170
  6. WO 2012063931

 

Process route

OH

OH

hydrolysis

……………………………………………………………………………………

Influenza virus is a central virus of the cold syndrome, which has attacked human being periodically to cause many deaths amounting to tens millions. Although the number of deaths shows a tendency of decrease in the recent years owing to the improvement in hygienic and nutritive conditions, the prevalence of influenza is repeated every year, and it is apprehended that a new virus may appear to cause a wider prevalence.

For prevention of influenza virus, vaccine is used widely, in addition to which low molecular weight substances such as Amantadine and Ribavirin are also used

 

……………………………….

Synthesis of Favipiravir

ZHANG Tao1, KONG Lingjin1, LI Zongtao1,YUAN Hongyu1, XU Wenfang2*

(1. Shandong Qidu PharmaceuticalCo., Ltd., Linzi 255400; 2. School of Pharmacy, Shandong University, Jinan250012)

ABSTRACT: Favipiravir was synthesized from3-amino-2-pyrazinecarboxylic acid by esterification, bromination with NBS,diazotization and amination to give 6-bromo-3-hydroxypyrazine-2-carboxamide,which was subjected to chlorination with POCl3, fluorination with KF, andhydrolysis with an overall yield of about 22%.

………………………………..

US6787544

 

 

Figure US06787544-20040907-C00005

 

subs            G1 G2 G3 G4 R2
    compd 32 N CH C—CF3 N H

…………………

EP2192117

Figure US20100286394A1-20101111-C00001

Example 1-1

 

Figure US20100286394A1-20101111-C00002

 

To a 17.5 ml N,N-dimethylformamide solution of 5.0 g of 3,6-difluoro-2-pyrazinecarbonitrile, a 3.8 ml water solution of 7.83 g of potassium acetate was added dropwise at 25 to 35° C., and the solution was stirred at the same temperature for 2 hours. 0.38 ml of ammonia water was added to the reaction mixture, and then 15 ml of water and 0.38 g of active carbon were added. The insolubles were filtered off and the filter cake was washed with 11 ml of water. The filtrate and the washing were joined, the pH of this solution was adjusted to 9.4 with ammonia water, and 15 ml of acetone and 7.5 ml of toluene were added. Then 7.71 g of dicyclohexylamine was added dropwise and the solution was stirred at 20 to 30° C. for 45 minutes. Then 15 ml of water was added dropwise, the solution was cooled to 10° C., and the precipitate was filtered and collected to give 9.44 g of dicyclohexylamine salt of 6-fluoro-3-hydroxy-2-pyradinecarbonitrile as a lightly yellowish white solid product.

1H-NMR (DMSO-d6) δ values: 1.00-1.36 (10H, m), 1.56-1.67 (2H, m), 1.67-1.81 (4H, m), 1.91-2.07 (4H, m), 3.01-3.18 (2H, m), 8.03-8.06 (1H, m), 8.18-8.89 (1H, broad)

Example 1-2

4.11 ml of acetic acid was added at 5 to 15° C. to a 17.5 ml N,N-dimethylformamide solution of 5.0 g of 3,6-difluoro-2-pyrazinecarbonitrile. Then 7.27 g of triethylamine was added dropwise and the solution was stirred for 2 hours. 3.8 ml of water and 0.38 ml of ammonia water were added to the reaction mixture, and then 15 ml of water and 0.38 g of active carbon were added. The insolubles were filtered off and the filter cake was washed with 11 ml of water. The filtrate and the washing were joined, the pH of the joined solution was adjusted to 9.2 with ammonia water, and 15 ml of acetone and 7.5 ml of toluene were added to the solution, followed by dropwise addition of 7.71 g of dicyclohexylamine. Then 15 ml of water was added dropwise, the solution was cooled to 5° C., and the precipitate was filtered and collected to give 9.68 g of dicyclohexylamine salt of 6-fluoro-3-hydroxy-2-pyrazinecarbonitrile as a slightly yellowish white solid product.

Examples 2 to 5

The compounds shown in Table 1 were obtained in the same way as in Example 1-1.

 

TABLE 1
Figure US20100286394A1-20101111-C00003
Example No. Organic amine Example No. Organic amine
2 Dipropylamine 4 Dibenzylamine
3 Dibutylamine 5 N-benzylmethylamine

 

Dipropylamine salt of 6-fluoro-3-hydroxy-2-pyrazinecarbonitrile

1H-NMR (DMSO-d6) 6 values: 0.39 (6H, t, J=7.5 Hz), 1.10 (4H, sex, J=7.5 Hz), 2.30-2.38 (4H, m), 7.54 (1H, d, J=8.3 Hz)

Dibutylamine salt of 6-fluoro-3-hydroxy-2-pyrazinecarbonitrile

1H-NMR (DMSO-d6) 6 values: 0.36 (6H, t, J=7.3 Hz), 0.81 (4H, sex, J=7.3 Hz), 0.99-1.10 (4H, m), 2.32-2.41 (4H, m), 7.53 (1H, d, J=8.3 Hz)

Dibenzylamine salt of 6-fluoro-3-hydroxy-2-pyrazinecarbonitrile

1H-NMR (DMSO-d6) δ values: 4.17 (4H, s), 7.34-7.56 (10H, m), 8.07 (1H, d, J=8.3 Hz)

N-benzylmethylamine salt of 6-fluoro-3-hydroxy-2-pyrazinecarbonitrile

1H-NMR (DMSO-d6) δ values: 2.57 (3H, s), 4.14 (2H, s), 7.37-7.53 (5H, m), 8.02-8.08 (1H, m)

Preparation Example 1

 

Figure US20100286394A1-20101111-C00004

 

300 ml of toluene was added to a 600 ml water solution of 37.5 g of sodium hydroxide. Then 150 g of dicyclohexylamine salt of 6-fluoro-3-hydroxy-2-pyrazinecarbonitrile was added at 15 to 25° C. and the solution was stirred at the same temperature for 30 minutes. The water layer was separated and washed with toluene, and then 150 ml of water was added, followed by dropwise addition of 106 g of a 30% hydrogen peroxide solution at 15 to 30° C. and one-hour stirring at 20 to 30° C. Then 39 ml of hydrochloric acid was added, the seed crystals were added at 40 to 50° C., and 39 ml of hydrochloric acid was further added dropwise at the same temperature. The solution was cooled to 10° C. the precipitate was filtered and collected to give 65.6 g of 6-fluoro-3-hydroxy-2-pyrazinecarboxamide as a slightly yellowish white solid.

1H-NMR (DMSO-d6) δ values: 8.50 (1H, s), 8.51 (1H, d, J=7.8 Hz), 8.75 (1H, s), 13.41 (1H, s)

 

………………….

jan 2014

Investigational flu treatment drug has broad-spectrum potential to fight multiple viruses
First patient enrolled in the North American Phase 3 clinical trials for investigational flu treatment drug

BioDefense Therapeutics (BD Tx)—a Joint Product Management office within the U.S. Department of Defense (DoD)—announced the first patient enrolled in the North American Phase 3 clinical trials for favipiravir (T-705a). The drug is an investigational flu treatment candidate with broad-spectrum potential being developed by BD Tx through a contract with Boston-based MediVector, Inc.

Favipiravir is a novel, antiviral compound that works differently than anti-flu drugs currently on the market. The novelty lies in the drug’s selective disruption of the viralRNA replication and transcription process within the infected cell to stop the infection cycle.

“Favipiravir has proven safe and well tolerated in previous studies,” said LTC Eric G. Midboe, Joint Product Manager for BD Tx. “This first patient signifies the start of an important phase in favipiravir’s path to U.S. Food and Drug Administration (FDA) approval for flu and lays the groundwork for future testing against other viruses of interest to the DoD.”

In providing therapeutic solutions to counter traditional, emerging, and engineered biological threats, BD Tx chose favipiravir not only because of its potential effectiveness against flu viruses, but also because of its demonstrated broad-spectrum potential against multiple viruses.  In addition to testing favipiravir in the ongoing influenzaprogram, BD Tx is testing the drug’s efficacy against the Ebola virus and other viruses considered threats to service members. In laboratory testing, favipiravir was found to be effective against a wide variety of RNA viruses in infected cells and animals.

“FDA-approved, broad-spectrum therapeutics offer the fastest way to respond to dangerous and potentially lethal viruses,” said Dr. Tyler Bennett, Assistant Product Manager for BD Tx.

MediVector is overseeing the clinical trials required by the  FDA  to obtain drug licensure. The process requires safety data from at least 1,500 patients treated for flu at the dose and duration proposed for marketing of the drug. Currently, 150 trial sites are planned throughout the U.S.

SOURCE BioDefense Therapeutics

 

Efficient synthesis of 3H,3’H-spiro[benzofuran-2,1′-isobenzofuran]-3,3′-dione as novel skeletons specifically for influenza virus type B inhibition.

Malpani Y, Achary R, Kim SY, Jeong HC, Kim P, Han SB, Kim M, Lee CK, Kim JN, Jung YS.

Eur J Med Chem. 2013 Apr;62:534-44. doi: 10.1016/j.ejmech.2013.01.015. Epub 2013 Jan 29.

 

 

US3631036 * Nov 4, 1969 Dec 28, 1971 American Home Prod 5-amino-2 6-substituted-7h-pyrrolo(2 3-d) pyrimidines and related compounds
US3745161 * Apr 20, 1970 Jul 10, 1973 Merck & Co Inc Phenyl-hydroxy-pyrazine carboxylic acids and derivatives
US4404203 * May 14, 1981 Sep 13, 1983 Warner-Lambert Company Substituted 6-phenyl-3(2H)-pyridazinones useful as cardiotonic agents
US4545810 * Mar 25, 1983 Oct 8, 1985 Sds Biotech Corporation Herbicidal and plant growth regulant diphenylpyridazinones
US4565814 * Jan 18, 1984 Jan 21, 1986 Sanofi Pyridazine derivatives having a psychotropic action and compositions
US4661145 * Sep 20, 1984 Apr 28, 1987 Rohm And Haas Company Plant growth regulating 1-aryl-1,4-dihydro-4-oxo(thio)-pyridazines
US5420130 May 16, 1994 May 30, 1995 Synthelabo 2-aminopyrazine-5-carboxamide derivatives, their preparation and their application in therapeutics
US5459142 * Aug 23, 1993 Oct 17, 1995 Otsuka Pharmaceutical Co., Ltd. Pyrazinyl and piperazinyl substituted pyrazine compounds
US5597823 Jun 5, 1995 Jan 28, 1997 Abbott Laboratories Tricyclic substituted hexahydrobenz [e]isoindole alpha-1 adrenergic antagonists
US6159980 * Sep 15, 1997 Dec 12, 2000 Dupont Pharmaceuticals Company Pyrazinones and triazinones and their derivatives thereof
EP0023358A1 * Jul 28, 1980 Feb 4, 1981 Rohm And Haas Company Process for the preparation of pyridazine derivatives
GB1198688A Title not available
HU9401512A Title not available
JPH09216883A * Title not available
JPS5620576A Title not available

 

ANTHONY MELVIN CRASTO

THANKS AND REGARD’S
DR ANTHONY MELVIN CRASTO Ph.D

GLENMARK SCIENTIST , NAVIMUMBAI, INDIA

did you feel happy, a head to toe paralysed man’s soul in action for you round the clock

need help, email or call me

MOBILE-+91 9323115463
web link

I was  paralysed in dec2007, Posts dedicated to my family, my organisation Glenmark, Your readership keeps me going and brings smiles to my family

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: