AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

ONL 1204 a small molecule peptide for Treatment of retinal detachment

 Uncategorized  Comments Off on ONL 1204 a small molecule peptide for Treatment of retinal detachment
Feb 172016
 

str1

OR

str1

CHEMBL508902.png

str1

ONL 1204

CAS 1349038-53-4

(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[2-[(3R)-3-[[(2S)-2-[[(2S)-2-[[2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]-3-phenylpropanoyl]amino]-3-methylbutanoyl]amino]-3-hydroxybutanoyl]amino]acetyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-3-phenylpropanoyl]amino]-2-oxopiperidin-1-yl]acetyl]amino]-4-methylpentanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]pyrrolidine-2-carbonyl]amino]propanoic acid

His-His- Ile-Tyr-Leu-Gly-Ala-Val-Asn-Tyr-Ile-Tyr-NH2

ONL Therapeutics Inc.

Fas receptor (CD95)

Peptide, Retinal detachment, OPTHALMIC DRUGS

C71 H100 N18 O16, 1461.66

L-Histidyl-L-histidyl-L-isoleucyl-L-tyrosyl-L-leucylglycyl-L-alanyl-L-valyl-L-asparaginyl-L-tyrosyl-L-isoleucyl-L-tyrosinamide

RFVTGHFXGL YPA

ORPHAN DRUG DESIGNATION DATA

His-His- Ile-Tyr-Leu-Gly-Ala-Val-Asn-Tyr-Ile-Tyr-NH2

01/13/2016

Treatment of retinal detachment

ONL Therapeutics, Inc
1600 Huron Parkway
Second Floor
Ann Arbor, Michigan 48109…….http://www.accessdata.fda.gov/scripts/opdlisting/oopd/OOPD_Results_2.cfm?Index_Number=501215

ONL1204, ONL’s lead therapeutic candidate, is a first-in-class small molecule peptide designed to protect key retinal cells, including photoreceptors, against the apoptosis (programmed cell death) that occurs in a range of retinal diseases and conditions. It is this death of these retinal cells that is the root cause of vision loss and the leading cause of blindness.

Researchers have shown that ONL1204 effectively inhibits the Fas pathway; one of the body’s primary mechanisms for inducing programmed cell death (apoptosis). Specifically, the compound’s activity inhibits the Fas receptor, blocks the activation of the Fas pathway, and prevents the apoptosis cascade which results in the death of key retinal cells, including photoreceptor.

While initial development efforts for ONL1204 are focused on retinal detachment, preclinicalin vivo data, along with a growing body of literature, support potential application in age-related macular degeneration (AMD) and other chronic retinal diseases. Combined, the estimated market for the initial indications that ONL plans to target is >$12 billion globally.

ONL Therapeutics, Inc., a biopharmaceutical company developing novel therapies for preserving sight in a range of retinal diseases, today announced that the United States Food and Drug Administration (FDA) has granted orphan drug designation to ONL1204 for the treatment of retinal detachment. ONL1204 is a novel, first-in-class small molecule peptide designed to protect key retinal cells, including photoreceptors, from cell death that occurs in a range of retinal diseases and conditions. Death of these retinal cells is the root cause of vision loss and the leading cause of blindness. ONL expects to advance ONL1204 into clinical trials for retinal detachment patients in 2016.

Retinal detachment occurs when the retina is separated from the underlying layer of cells called the retinal pigment epithelium (RPE). The RPE provides nutritional support to the highly-active photoreceptors in the retina. When there is a detachment, the photoreceptors no longer receive these nutrients and undergo cell death processes that dramatically impact a patient’s vision. Retinal detachments occur in approximately 50,000 people each year in the United States and affect people of all ages, although risk increases as people reach fifty years of age.

Patients experiencing a retinal detachment are normally treated by surgical reattachment of the retina to reconnect the photoreceptors with the RPE and prevent additional loss of vision. However, these procedures do not address the photoreceptor death and vision loss, which can be significant, that occurs prior to surgery. ONL1204 will be delivered to patients upon diagnosis and is intended to block photoreceptor cells from dying until surgery can be completed.

“When retinal detachments involve the center of vision called the macula, more than a third of patients have final best corrected vision of 20/60 or worse after successful surgery,” said David Zacks, M.D., Ph.D., co-founder and chief science officer of ONL Therapeutics. “Those are truly poor outcomes from successful surgeries. We are very pleased the FDA has recognized this need and that ONL is the only company to have received an orphan designation for this disease. It reinforces our belief that ONL1204 can play a key role in preventing vision loss in these patients by protecting their photoreceptors.”

The FDA’s Orphan Drug Designation program provides certain incentives for companies developing therapeutics to treat rare diseases or conditions that affect less than 200,000 individuals in the US. A drug candidate and its developer must meet several key criteria in order to qualify for, and obtain, orphan drug status. Once a drug has received orphan drug designation, the developer qualifies for a range of benefits, including federal grants, tax credits, reduction in certain regulatory fees, and the potential for seven years of market exclusivity for the drug following FDA marketing approval.

About ONL Therapeutics

ONL Therapeutics (ONL) is a biopharmaceutical company committed to protecting and improving the vision of patients with retinal disease. By advancing a novel breakthrough technology designed to protect key retinal cells from Fas-mediated cell death, ONL is pioneering an entirely new approach to preserving sight. The death of key retinal cells is the root cause of vision loss and leading cause of blindness, and is implicated in a wide range of retinal diseases, including retinal detachment and both the wet and dry forms of age related macular degeneration (AMD).

read

FDA grants orphan status for ONL Therapeutics’ ONL1204 to treat retinal detachment
The US Food and Drug Administration (FDA) has granted orphan drug designation for ONL Therapeutics’ first-in-class small molecule peptide, ONL1204, for the treatment of retinal detachment.

 

see,………https://newdrugapprovals.org/2016/02/17/onl-1204-a-small-molecule-peptide/

/////

N[C@@H](CCCNC(=N)N)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)O)C(=O)NCC(=O)N[C@@H](Cc2cncn2)C(=O)N[C@@H](Cc3ccccc3)C(=O)N[C@@H]6CCCN(CC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](Cc4ccc(O)cc4)C(=O)N5CCC[C@H]5C(=O)N[C@@H](C)C(=O)O)C6=O

OR

CC(C)CC(C(=O)NC(CC1=CC=C(C=C1)O)C(=O)N2CCCC2C(=O)NC(C)C(=O)O)NC(=O)CN3CCCC(C3=O)NC(=O)C(CC4=CC=CC=C4)NC(=O)C(CC5=CN=CN5)NC(=O)CNC(=O)C(C(C)O)NC(=O)C(C(C)C)NC(=O)C(CC6=CC=CC=C6)NC(=O)C(CCCN=C(N)N)N

OR

C[C@@H](CC)[C@H](NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@H](CC(=O)N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc2ccc(O)cc2)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](Cc3cncn3)N)Cc4cncn4)[C@@H](C)CC)C(C)C)C(=O)N[C@@H](Cc5ccc(O)cc5)C(N)=O

Share

Biocon’s Rosuvastatin Calcium tablets get EU approval to treat hyperlipidemia

 companies  Comments Off on Biocon’s Rosuvastatin Calcium tablets get EU approval to treat hyperlipidemia
Feb 172016
 

Biocon’s Rosuvastatin Calcium tablets get EU approval to treat hyperlipidemia
Indian biopharmaceutical company Biocon has received approval from the European Commission for its Rosuvastatin Calcium tablets to treat hyperlipidemia or mixed dyslipidemia.

http://www.pharmaceutical-technology.com/news/newsbiocons-rosuvastatin-calcium-tablets-gets-eu-approval-to-treat-hyperlipidemia-4811839?WT.mc_id=DN_News

Indian biopharmaceutical company Biocon has received approval from the European Commission for its Rosuvastatin Calcium tablets to treat hyperlipidemia or mixed dyslipidemia.

Hyperlipidemia is a common genetic disorder that increases lipids and/or lipoproteins levels in the blood.

The first generic formulation approval will allow Biocon to sell Rosuvastatin Calcium 5mg, 10mg, 20mg and 40mg tablets in more than 15 European countries, starting in fiscal 2017.

“This approval paves the way for Biocon to launch Rosuvastatin Calcium tablets in several European countries.”

The company plans to collaborate with regional partners to market the drug; a generic equivalent of Crestor tablets.

Biocon chairperson and managing director Kiran Mazumdar-Shaw said: “This is indeed a proud moment for Biocon’s Small Molecules business.

Biocon chairperson and managing director Kiran Mazumdar-Shaw

“This approval paves the way for Biocon to launch Rosuvastatin Calcium tablets in several European countries.”

The approval will allow the company to address the $1.2bn opportunity in the EU. It will also make it easier for the company to market its products in emerging markets, where regulatory clearances are primarily based on approvals given by regulators in the US / EU.

Biocon was the first generic company to receive a certificate of suitability (CEP) for Rosuvastatin Calcium API from the European Directorate for the Quality of Medicines (EDQM).

CEP certification indicates that an API is suitable for use in medicinal products in the EU.

Biocon CEO and joint managing director Dr Arun Chandavarkar said: “The European approval for Biocon’s generic version of Rosuvastatin Calcium underscores Biocon’s unique strengths in the chronic therapies space and our compliance with global standards that enable us to achieve the highest quality standards for all our products.

“It augurs well for this nascent business, which will be one of our growth drivers in the coming years.”

The company plans to boost its generic formulations business with a target of 20-25 filings over the next few years.

Additionally, Biocon is developing a new facility in Bengaluru, in the Indian state of Karnataka, where it will produce oral solid dosage formulations.

Biocon CEO and joint managing director Dr Arun Chandavarkar

/////////

Share

BENFOTIAMINE

 Uncategorized  Comments Off on BENFOTIAMINE
Feb 142016
 

Benfotiamine.svg

Benfotiamine

S-[(Z)-2-[(4-amino-2-methylpyrimidin-5-yl)methyl-formylamino]-5-phosphonooxypent-2-en-3-yl] benzenecarbothioate

Benphothiamine; Betivina; Biotamin; Neurostop; Nitanevril;22457-89-2

C19H23N4O6PS
MW: 466.447882 g/mol

Benfotiamine (rINN, or S-benzoylthiamine O-monophosphate) is a synthetic S-acyl derivative of thiamine (vitamin B1).

It has been licensed for use in Germany since 1993 under the trade name Milgamma. (Combinations with pyridoxine or cyanocobalamin are also sold under this name.) It is prescribed there for treating sciatica and other painful nerve conditions.[1]

It is marketed as a medicine and/or dietary supplement, depending on the respective Regulatory Authority.[citation needed]

benfotiamine.png

Uses

Benfotiamine is primarily marketed as an antioxidant dietary supplement. In a clinical study with six patients, benfotiamine lowered AGE by 40%.[2]

Benfotiamine may be useful for the treatment of diabetic retinopathy, neuropathy, and nephropathy however “Most of the effects attributed to benfotiamine are extrapolated from in vitro and animal studies. Unfortunately apparent evidences from human studies are scarce and especially endpoint studies are missing. Therefore additional clinical studies are mandatory to explore the therapeutic potential of benfotiamine in both diabetic and non-diabetic pathological conditions”.[3] It is thought that treatment with benfotiamine leads to increased intracellular thiamine diphosphate levels,[3] a cofactor of transketolase. This enzyme directs advanced glycation and lipoxidation end products (AGE’s, ALE’s) substrates to the pentose phosphate pathway, thus reducing tissue AGEs.[4][5][6][7][8]

Pharmacology

After absorption, benfotiamine can be dephosphorylated by cells bearing an ecto-alkaline phosphatase to the lipid-soluble S-benzoylthiamine.[9] Benfotiamine should not be confused with allithiamine, a naturally occurring thiamine disulfide derivative with a distinct pharmacological profile.[10]

PATENT

https://patentscope.wipo.int/search/en/detail.jsf;jsessionid=48F4CE7167F2EB243FBAF807987983D5.wapp1nB?docId=WO2014059702&recNum=1&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=PCTDescription

​ The Benfotiamine, disclosed in US pat. no. 19623064000 US english names: S-benzoylthiamine O-monophosphate common name: Benfotiamine, chemical name: S − 2-[ [ (2-methyl-4-amino-5-pyrimidinyl) methyl ]-propionylamino ]-5-phosphonato-2-pentene-3-thiol benzoate, formula C 19 H 23 N 406 PS molecular weight 466.45 the following structural formula:

​ Chemical composition of the same species, in various physico-chemical conditions, crystallization into two or more different structure of the crystalline phenomenon, also referred to as polymorphs or homogeneous an image drug polymorph is a common phenomenon of drug discovery, drug quality is an important factor. Various polymorphs have different physical properties such as appearance, melting point, hardness, dissolution rate, chemical stability, mechanical stability, etc. differences, these differences in the physical properties of the sometimes affect the stability of the drug, bioavailability, even the drug availability. Thus, in drug development, it should be fully considered drug poly-type problems, the type of study and control in drug development of significant research content.

​ The benfotiamine, vitamin B 1 lipid-soluble derivatives, improved water-soluble vitamins B1 low bioavailability of disadvantages, increased blood and tissues. Thiamine concentration, thereby enhancing efficacy. The primary application to the following aspects (1) for thiamine deficiency disease prevention and treatment; (2) vitamin B 1 demand increases, from the food uptake is not sufficient make-up, fatigue, hyperthyroidism, gestation, lactation, vigorous manual labor, etc.); (3) for the treatment of non-l 酒性 lopinavir, grams of brain disease; (4) for the treatment of foot disease; (5) for the disease, the speculative and thiamine deficiency and metabolic disorders associated with treatment, such as: neuropathic pain; muscle pain, joint pain ​; Peripheral-inflammatory, peripheral nerve

​ The paralysis; myocardial metabolism disorders, constipation, gastrointestinal motility dysfunction. The benfotiamine as vitamin B 1 supplemental agents have been in the united states, japan, europe, etc worldwide market. Recent studies have shown that, benfotiamine in diabetic peripheral neuropathy and retinopathy of significant therapeutic effect. In addition, our studies, benfotiamine may also be applied to the prevention and treatment of alzheimer’s disease, and aging.

​ Alzheimer’s disease (Altheimer’s disease, AD) is a cognitive, behavioral disorders is the primary clinical manifestations progressive neurodegenerative diseases, an age-related disorders, with age, their prevalence is a significant rise. 我国 the number of people in excess of 600 million AD patients, it is contemplated that in 2050 worldwide by the year AD patient may exceed 3000 million people as the medical scientific development, severe affect human health, mortality is a leading significant diseases such as cancer, stroke, cardiovascular disease, exhibit a decrease in mortality year by year, and AD mortality the rendering large increase in ​ . In addition, alzheimer’s disease course long, the disabling rate is high, thus, alzheimer’s disease will be the 21 st century threaten both human diseases the most serious. It is estimated that worldwide by the year AD 2010 for medical costs up to 6040 of millions of dollars, the same global of the gross national product of 1%

​ China and the USA, the world there have been the following two classes of drugs approved for AD treatment: cholinesterase inhibitors and N-methyl D-aspartate (NMDA) receptor antagonist are both improved AD patient symptoms, slow disease progression does not prevent or reverse the progression of a disease. The benfotiamine by inhibiting the sugar synthase kinase -3 (Glycogen synthase kinase -3, GSK -3) activity, decrease in brain beta-amyloid protein (beta-amyloid, alpha beta) the deposition and tau protein phosphorylation, reduce alzheimer’s disease, pathological damage.

​ Presently available, benfotiamine primarily in the form of tablets and powders is administered in the form of, all formulations are not related to the benfotiamine feedstock form has not yet been the benfotiamine crystalline be systematically studied, the present US pat. no. first for benfotiamine of systematic study of various forms, illustrating different form benfotiamine characteristics and their feasibility. As a pharmaceutical agent

PATENT

http://www.google.com/patents/CN103772432A?cl=en

Example 1:

Was added to the reaction kettle 4000kg polyphosphoric acid, heated to 100 ~ 120 ° C, the vitamin BI 1000kg batches added to the reaction dad, add after kept at this temperature range 8 hours, was added water quenching 3000kg off after the reaction, the temperature was raised to 80-90 ° C hydrolysis of 10 hours; cooled to room temperature, was added to the kettle 5000kg trioctylamine mixture of methyl tert-butyl ether = WPA / 1/1; aqueous phase 5000kg methanol to precipitate a solid, centrifuged to obtain a monoester 1200kg vitamin BI phosphoric acid crude; the 1200kg Vitamin `prime BI phosphate monoester crude in 6000kg water mixed beating, down to O ~ 5 ° C, dropping liquid in this temperature range adjusting the PH value of the base system to 12.0 ~ 14.0; PH after adjustment to ensure that the reactor temperature 10 ~ 25 ° C within 1200kg of benzoyl chloride was added dropwise, after the addition is complete heat the reaction to completion; filtered and the filtrate adjust PH from 3.5 to 4.0 precipitated solid was isolated and dried to give a white solid 1200kg, namely benfotiamine. Yield: 77.38%, Purity: 98.70% ο

  Example 2:

Was added to the reaction kettle 5000kg polyphosphoric acid, heated to 80 ~ 100 ° C, the vitamin BI 1000kg batches added to the reaction dad, add after kept at this temperature range 6 hours, was added water quenching 5000kg off after the reaction was heated to reflux for 5 hours hydrolysis; cooled to room temperature, the autoclave was added to the mixture was extracted twice 4000kg trioctylamine / methyl tert-butyl ether = 1/1; aqueous phase 6000kg ethanol precipitation The solid obtained by centrifugation vitamin BI phosphate monoester 1200kg crude; after 1200kg vitamin BI crude phosphate monoester product mixing beating in 6000kg water, down to O ~ 5 ° C, solution of caustic soda adjust PH value system in this temperature range to 10.0 ~ 12.0; PH adjusting finished, to ensure the reactor temperature 10 ~ 25 ° C within 1200kg of benzoyl chloride was added dropwise, after the addition is complete heat the reaction to completion; filtered, the solid was filtered, the filtrate was adjusted to 3.5 ~ PH value 4.0 precipitated solid was isolated and dried to give a white solid 1250kg, namely benfotiamine. Yield: 80.61%, Purity: 98.50% ο

  Example 3:

After the reactor was added 3000kg polyphosphoric acid, heated to 90 ~ 110 ° C, the vitamin BI 1000kg batches added to the reaction dad, add after the insulation in this temperature range for 5 hours, 5000kg of water quenching off after the reaction, the temperature was raised to 90-100 ° C hydrolysis 5 hours; cooled to room temperature, was added to the kettle 5000kg trioctylamine methyl tert-butyl ether mixture was extracted twice = / 1/1; aqueous phase Join 7000kg acetone precipitate a solid, mono- 1230kg centrifuged to obtain crude vitamin BI phosphoric acid; vitamin BI after 1200kg crude phosphate monoester product mixing beating in 6000kg water, down to O ~ 5 ° C, solution of caustic soda adjusted within this temperature range System PH value to 11.0 ~ 13.0; PH after adjustment to ensure that the temperature of the reactor was added dropwise within 10 ~ 25 ° C within 1200kg benzoyl chloride, and after the addition is complete heat to the completion of the reaction; filtered, the filtrate was adjusted to 3.5 PH value to 4.0 precipitated solid was isolated and dried to give a white solid 1240kg, namely benfotiamine. Yield: 79.96%, Purity: 98.50% ο

Example 4

Was added to the reaction kettle 4000kg polyphosphoric acid, heated to 100 ~ 120 ° C, the vitamin BI 1000kg batches added to the reaction dad, add after kept at this temperature range for 4 hours, water quenching 8000kg off after the reaction, the temperature was raised to 90 – 110 ° C hydrolysis seven hours; cooled to room temperature, was added to the kettle 4000kg trioctylamine / methyl tert-butyl ether mixture was extracted phosphoric = 1/1; aqueous phase 6000kg methanol precipitated solid was centrifuged to give 1200kg vitamin BI phosphate monoester crude; the 1200kg vitamin BI phosphate monoester crude 6000kg water were mixed after beaten, cooled to O ~ 5 ° C, caustic soda was added dropwise at this temperature adjustment range of the system PH value to 9.0 ~ 11.0; PH adjustment finished, the reactor temperature to ensure solution of 10 ~ 25 ° C within 1200kg benzoyl chloride, and after the addition is complete heat to the completion of the reaction; filtered, the filtrate was adjusted to PH value

3.5 to 4.0 precipitated solid was isolated and dried to give a white solid 1260kg, namely benfotiamine. Yield: 81.24%, Purity: 98.70% ο

  Example 5

Was added to the reaction kettle 5000kg polyphosphoric acid, heated to 110 ~ 130 ° C, the vitamin BI 1000kg batches added to the reaction dad, add after kept at this temperature range for 3 hours, water quenching 10000kg off after the reaction, the temperature was raised to 110 – 120 ° C under reflux for 3 hours hydrolysis; cooled to room temperature, the mixture was extracted phosphoric acid was added to the kettle 3000kg trioctylamine / methyl tert-butyl ether = 1/1; aqueous phase `6000kg ethanol was added to precipitate a solid, obtained by centrifugation 1200kg vitamin BI phosphate monoester crude; after 1200kg vitamin BI phosphate monoester crude mixing beating in 6000kg water, down to O ~ 5 ° C, solution of caustic soda in this temperature range adjusting the PH value of the system to the 8.0 ~ 10.0; PH adjusting finished, 1200kg of benzoyl chloride was added dropwise to ensure the kettle temperature within 10 ~ 25 ° C, after the addition is complete heat the reaction to completion; filtered, the filtrate was adjusted to PH value 3.5 to 4.0 precipitated solid was isolated and dried to give a white solid 1230kg, namely benfotiamine. Yield: 79.31%, purity: 98.60% ο

PATENT

Figure CN102911208AD00041

http://www.google.com/patents/CN102911208A?cl=en

Example I: Phosphorus oxychloride 15. 33g (O. Imol) was added to the water 10. 8mL, placed in an ice bath with stirring O. 5 hours was added portionwise thiamine 26. 53g (O. lmol), warmed to 50 ° C followed by stirring for 2 hours, cooled to room temperature to obtain a solution of phosphorus thiamine, thiamine HPLC phosphorus content of 91.36%, adjusted with 15% NaOH solution to pH 8_9 the solution was added 28. Ilg (O. 2mol) benzoyl chloride, the 0_5 ° C under stirring, monitoring the reaction solution and pH changes, the pH value is stable, does not change when the reaction liquid PH, stirring was continued for I hour the reaction, the solution was adjusted to pH 3. 5-4. 0, suction filtration to give 33. 58g benfotiamine white solid. Yield 71.9%.

  MP: 164-165 ° C; H1 NMR (400MHz, CDCl3): 2.18 (s, 3H), 2.56 (s, 3H), 2 58 (t, / = 6 7,2H.), 4.. 33 (t, / = 6.7,2H), 4. 83 (s, 2H), 7. 44 (m, 2H), 7. 57 (dd, / = 7. 3, J = I. 5, 1H), 7. 60 (m, 2H), 7. 70 (s, 1H), 8. 67 (s, 1H).

  Example 2: Phosphorus oxychloride 15. 33g (O. lmol) was added to a 7. 2mL of water, placed in an ice bath with stirring O. 5 hours was added portionwise thiamine 21. 23g (O. OSmol), warmed to 60 ° C followed by stirring for 2 hours, cooled to room temperature to obtain a solution of phosphorus thiamine, thiamine HPLC phosphorus content of 92.37%, adjusted with 15% NaOH solution to pH 8_9 the solution was added 28. Ilg (O. 2mol) benzoyl chloride, stirred at 0-5 ° C, and monitoring the pH of the reaction solution changes, stable pH, the reaction solution PH does not change when the stirring was continued for I hour the reaction, the solution pH adjusted to 3. 5-4. 0, suction filtration to give 27. 69g benfotiamine white solid. Yield 74.2%.

MP: 164-165 ° C; H1 NMR (400MHz, CDCl3):.. 2.18 (s, 3H), 2 56 (s, 3H), 2 58 (t, / = 6 7,2H.), 4. 33 (t, / = 6.7,2H), 4. 83 (s, 2H), 7. 44 (m, 2H), 7. 57 (dd, / = 7. 3, / = 1. 5, 1H ), 7. 60 (m, 2H), 7. 70 (s, 1H), 8. 67 (s, 1H).

  Example 3: Phosphorus oxychloride 15. 33g (O. lmol) was added to a 3. 6mL of water, placed in an ice bath with stirring O. 5 hours was added portionwise thiamine 15. 92g (O. 06mol), warmed to 70 ° C followed by stirring for 2 hours, cooled to room temperature to obtain a solution of phosphorus thiamine, thiamine HPLC phosphorus content of 93.23%, adjusted with 15% NaOH solution to pH 8_9 the solution was added 28. Ilg (O. 2mol) benzoyl chloride, stirred at 0-5 ° C, and monitoring the pH of the reaction solution changes, stable pH, the reaction solution PH does not change when the stirring was continued for I hour the reaction, the solution pH adjusted to 3. 5-4. 0, filtration, benfotiamine was a white solid 23. 71g. Yield 84.7%.

MP: 164-165 ° C; H1 NMR (400MHz, CDCl3): 2.18 (s, 3H), 2.56 (s, 3H), 2 58 (t, / = 6 7,2H.), 4.. 33 (t, / = 6.7,2H), 4. 83 (s, 2H), 7. 44 (m, 2H), 7. 57 (dd, / = 7. 3, / = 1. 5, 1H), 7. 60 (m, 2H), 7. 70 (s, 1H), 8. 67 (s, 1H).

Example 4: Phosphorus oxychloride 15. 33g (O. lmol) was added to a 7. 2mL of water, placed in an ice bath with stirring O. 5 hours was added portionwise thiamine 10. 62g (O. 04mol), warmed to 80 ° C followed by stirring for 2 hours, cooled to room temperature to obtain a solution of phosphorus thiamine, thiamine HPLC phosphorus content of 95.26%, adjusted with 15% NaOH solution to pH 8_9 the solution was added 28. Ilg (O. 2mol) benzoyl chloride, stirred at 0-5 ° C, and monitoring the pH of the reaction solution changes, stable pH, the reaction solution PH does not change when the stirring was continued for I hour the reaction, the solution pH adjusted to 3. 5-4. 0, filtration, benfotiamine was a white solid 15. 22g. Yield 85.2%.

MP: 164-165 ° C; H1 NMR (400MHz, CDCl3): 2.18 (s, 3H), 2.56 (s, 3H), 2 58 (t, / = 6 7,2H.), 4.. 33 (t, / = 6.7,2H), 4. 83 (s, 2H), 7. 44 (m, 2H), 7. 57 (dd, / = 7. 3, / = 1. 5, 1H), 7. 60 (m, 2H), 7. 70 (s, 1H), 8. 67 (s, 1H).

PATENT

http://www.google.com/patents/CN103724374A?cl=en

Synthesis  I) thiamine monophosphate hydrochloride

  In the reaction flask was added phosphate, thiamine hydrochloride, phosphorous pentoxide was added and stirred to dissolve, controlling the reaction temperature to complete the reaction thiamine hydrochloride, was added and stirring was continued after dropwise addition of concentrated hydrochloric acid hydrolysis of purified water was added dropwise acetone crystallization dropwise at raising grain, filtration, washed with acetone crystal, vacuum drying intermediates thiamine monophosphate hydrochloride;

Figure CN103724374AD00061

  2) Synthesis of crude benfotiamine

In the reaction flask thiamine monophosphate hydrochloride, dissolved in purified water, sodium hydroxide was added dropwise to adjust the pH to alkaline and steady, benzoyl chloride, sodium hydroxide was added dropwise while controlling alkaline pH, to control the temperature of the reaction pH remained stable, the end of the reaction, concentrated hydrochloric acid was added and extracted twice with ethyl acetate, the aqueous phase of sodium hydroxide was added dropwise until the pH is acidic, crystal seeding planting, filtration, purified water and acetone crystal, vacuum drying crude benfotiamine;

Figure CN103724374AD00071

See also

References

  • 1 “BBC news story: Back pain drug ‘may aid diabetics'”. BBC News. 18 February 2003.
  • 2
  • J Lin, A Alt, J Liersch, RG Bretzel, M Brownlee (May 2000). “Benfotiamine Inhibits Intracellular Formation of Advanced Glycation End Products in vivo” (PDF). Diabetes. 49 (Suppl1) (A143): 583.
  • 3
  • Balakumar P, Rohilla A, Krishan P, Solairaj P, Thangathirupathi A (2010). “The multifaceted therapeutic potential of benfotiamine”. Pharmacol Res 61 (6): 482–8. doi:10.1016/j.phrs.2010.02.008. PMID 20188835.
  • 4
  • Since AGEs are the actual agents productive of diabetic complications, in theory, if diabetic patients could block the action of AGEs completely by benfotiamine, strict blood sugar control, with its disruption of lifestyle and risks to health and life by severe hypoglycemic episodes, could be avoided, with revolutionary implications for the treatment of diabetes. Hammes, HP; Du, X; Edelstein, D; Taguchi, T; Matsumura, T; Ju, Q; Lin, J; Bierhaus, A; Nawroth, P; Hannak, D; Neumaier, M; Bergfeld, R; Giardino, I; Brownlee, M (2003). “Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy”. Nat Med 9 (3): 294–299. doi:10.1038/nm834.
  • 5
  • Stirban A, Negrean M, Stratmann B; et al. (2007). “Adiponectin decreases postprandially following a heat-processed meal in individuals with type 2 diabetes: an effect prevented by benfotiamine and cooking method”. Diabetes Care 30 (10): 2514–6. doi:10.2337/dc07-0302. PMID 17630265.
  • 6
  • Stracke H, Hammes HP, Werkmann D; et al. (2001). “Efficacy of benfotiamine versus thiamine on function and glycation products of peripheral nerves in diabetic rats”. Exp. Clin. Endocrinol. Diabetes 109 (6): 330–6. doi:10.1055/s-2001-17399. PMID 11571671.
  • 7
  • Stirban A, Negrean M, Stratmann B; et al. (2006). “Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes”. Diabetes Care 29 (9): 2064–71. doi:10.2337/dc06-0531. PMID 16936154.
  • 8
  • Babaei-Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ (2003). “Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine”. Diabetes 52 (8): 2110–20. doi:10.2337/diabetes.52.8.2110. PMID 12882930.
  • 9
  • Yamazaki, M (1968). “Studies on the absorption of S-benzoylthiamine O-monophosphate : (I) Metabolism in tissue homogenates”. Vitamins 38 (1): 12–20.
  • 10

Volvert, M.L.; Seyen, S.; Piette, M.; Evrard, B.; Gangolf, M.; Plumier, J.C.; Bettendorff, L. (2008). “Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives”. BMC Pharmacology 8 (1): 10. doi:10.1186/1471-2210-8-10. PMC 2435522. PMID 18549472.

External links

CN101654464A * Jul 28, 2009 Feb 24, 2010 湖北华中药业有限公司;湖北制药有限公司 Method for synthesizing vitamin B1 phosphatic monoester
CN102766163A * Jun 29, 2012 Nov 7, 2012 暨明医药科技(苏州)有限公司 Synthesis method of phosphate monoester of vitamin B1
CN102911208A * Sep 25, 2012 Feb 6, 2013 同济大学 Method for synthesizing benfotiamine
CA682778A * Mar 24, 1964 Sankyo Kabushiki Kaisha S-benzoylthiamine o-monophosphate and a process for preparing the same
US3507854 * Apr 7, 1965 Apr 21, 1970 Sankyo Co Process for preparing thiamine derivatives
CN103772432A * Jan 3, 2014 May 7, 2014 湖北瑞锶科技有限公司 Production method of benfotiamine
CN103772432B * Jan 3, 2014 Jan 20, 2016 湖北瑞锶科技有限公司 一种苯磷硫胺的生产方法
Patent Submitted Granted
Topical compositions comprising benfotiamine and pyridoxamine [US7666442] 2006-03-02 2010-02-23
METHODS OF USING BENFOTIAMINE AND PYRIDOXAMINE COMPOSITIONS [US2010151061] 2010-06-17
Topical delivery of trace metals for skin care [US7569558] 2006-08-17 2009-08-04
METHODS OF IDENTIFYING CRITICALLY ILL PATIENTS AT INCREASED RISK OF DEVELOPMENT OF ORGAN FAILURE AND COMPOUNDS FOR THE TREATMENT HEREOF [US2014322207] 2014-07-11 2014-10-30
Protein Carrier-Linked Prodrugs [US2014323402] 2012-08-10 2014-10-30
ANTINEURITIC PHARMACEUTICAL COMBINATION AND COMPOSITIONS [US2014323428] 2012-12-14 2014-10-30
METHODS FOR IMPROVING MEDICAL THERAPIES [US2014335074] 2012-12-13 2014-11-13
LONG LASTING BREATH MINT [US2014335139] 2014-05-13 2014-11-13
High-Loading Water-Soluable Carrier-Linked Prodrugs [US2014296257] 2012-08-10 2014-10-02
PYRAZOLE-AMIDE COMPOUNDS AND PHARMACEUTICAL USE THEREOF [US2014296315] 2014-03-14 2014-10-02
Patent Submitted Granted
HYDRATE AND CRYSTAL OF FLUORENE COMPOUNDS [US2014296316] 2014-03-14 2014-10-02
Cysteine Peptide-Containing Health Drink [US2014302171] 2012-10-11 2014-10-09
Delaying the Progression of Diabetes [US2014303079] 2012-05-08 2014-10-09
FIBRONECTIN BASED SCAFFOLD DOMAIN PROTEINS THAT BIND TO MYOSTATIN [US2014309163] 2014-05-12 2014-10-16
METHODS AND COMPOSITIONS FOR CORRECTION OF ORGAN DYSFUNCTION [US2014274957] 2014-03-13 2014-09-18
COMPOUNDS FOR IMPROVED VIRAL TRANSDUCTION [US2014234278] 2012-09-28 2014-08-21
TOPICAL DERMAL DELIVERY COMPOSITIONS USING SELF ASSEMBLING NANOPARTICLES WITH CETYLATED COMPONENTS [US2014234428] 2013-02-15 2014-08-21
Polymeric Hyperbranched Carrier-Linked Prodrugs [US2014243254] 2012-08-10 2014-08-28
ENCAPSULATED OILS [US2014023688] 2013-07-12 2014-01-23
COMPOSITIONS, KITS AND METHODS FOR NUTRITION SUPPLEMENTATION [US2014023751] 2013-09-27 2014-01-23
Benfotiamine
Benfotiamine.svg
Benfotiamine ball-and-stick.png
Systematic (IUPAC) name
S-[2-{[(4-Amino-2-methylpyrimidin-5-yl)methyl] (formyl)amino}-5-(phosphonooxy)pent-2-en-3-yl] benzenecarbothioate
Clinical data
Trade names Milgamma
AHFS/Drugs.com International Drug Names
Legal status
Routes of
administration
Oral
Identifiers
CAS Number 22457-89-2 Yes
ATC code A11DA03
PubChem CID 3032771
ChemSpider 2297665 Yes
UNII Y92OUS2H9B Yes
ChEBI CHEBI:41039 
ChEMBL CHEMBL1491875 
Synonyms S-Benzoylthiamine O-monophosphate
Chemical data
Formula C19H23N4O6PS
Molar mass 466.448 g/mol

///////

O=P(O)(O)OCCC(/SC(=O)c1ccccc1)=C(/N(C=O)Cc2cnc(nc2N)C)C

Share

VASICINE, (peganine)

 Ayurveda  Comments Off on VASICINE, (peganine)
Feb 112016
 

str1.

str1

str1

str1

str1

Vasicine (peganine) is a quinazoline alkaloid. It is the active compound of Justicia adhatoda, after which the chemical is named.

Vasicine has been compared to theophylline both in vitro and in vivo.[1] It has also been studied in combination with the related alkaloid vasicinone. Both the alkaloids in combination (1:1) showed pronounced bronchodilatory activity in vivo and in vitro.[2] Both alkaloids are also respiratory stimulants.[2] Vasicine has a cardiac–depressant effect, while vasicinone is a weak cardiac stimulant; the effect can be normalized by combining the alkaloids.[2][3] Vasicine is reported to have a uterine stimulant effect.[3]

Vasicine

Synonym Peganine

Biological Sources It is obtained from the leaves of Adhatoda vasica (L.) Nees (Acanthaceae) (Malabar Nut, Adotodai, Paveltia); and the seeds of Peganum harmala L. (Rutaceae) (Harmel, Syrian Rue, African Rue).

Chemical Structure

1, 2, 3, 9-Tetrahydropyrrolo [2, 1-b] quinazoline-3-ol; (C11H12N2O).

Isolation It is isolated from the leaves of Adhatoda vasica* and also from the seeds of Peganum harmala** by adopting the standard methods of isolation described earlier in this chapter.

Characteristic Features

dl-Form: 1. It is obtained as needles from ethanol having mp 210°C.

  1. It sublimes on being subjected to high vacuum.
  2. It is soluble in acetone, alcohol, chloroform; and slightly soluble in water, ether and

benzene.

l-Form: 1. It is obtained as needles from ethanol with mp 212°C.

  1. Its specific rotation [α ]D14-2540(C = 2.4 in CHCl3); [α ]D14–14  62° (C = 2.4 in ethanol).

Note: In dilute HCl it is obtained as its dextrorotatory form.

Identification Tests

  1. Hydrochloride dihydrate derivative is obtained as needles having mp 208°C (dry).
  2. Hydroiodide dihydrate derivative is formed as needles with mp 195°C (dry).
  3. Methiodide derivative is obtained as needles from methanol having mp 187°C.
  4. Acetyl vasicine derivative (C11H11N2O COCH3) is formed as crystals having mp 123°C and bp0.01 230-240°C.

Uses

  1. It is mostly used as an expectorant and bronchodilator.
  2. It also shows oxytocic properties very similar to those exhibited by oxytocin and methyl ergometrine.
  3. Vasicine also shows abortifacient action which is due to the release of prostaglandins.

Biosynthesis of Vasicine Various studies in Peganum harmala have evidently revealed vasicine (peganine) to be derived from the anthranilic acid, while the remaining portion of the structure comprising of a pyrrolidine ring provided by ornithine. The probable mechanism of vasicine skeleton may be explained by virtue of the nucleophilic attack from the N-atom present in anthranilate upon the pyrrolidinium cation, ultimately followed by amide formation. However, interestingly this pathway is not being adopted in Justicia adhatoda.

Vasaka

Vasaka

http://www.himalayawellness.com/products/pharmaceuticals/vasaka.htm

Effective respiratory care

Vasaka (Malabar Nut Tree/Adhatoda zeylanica) is well known in Ayurveda for its beneficial effects in respiratory ailments, particularly as an expectorant in bronchitis. The leaves, flowers, fruits and roots are used extensively for treating cold, cough, whooping-cough, chronic bronchitis and asthma.

Vasaka grows throughout India, up to an altitude of 1,300 meters.

Active constituents:

Vasaka contains the pyrroquinazoline alkaloids, including vasicine, vasicol and vasinone along with other minor constituents. Vasicine and vasinone are the major bioactive constituents of Vasaka which have bronchodilatory and antitussive properties.

The alkaloids present in the plant show significant protection against allergen-induced bronchial obstruction.

Herb Functions:

Respiratory care: Vasaka exhibits anti-inflammatory, antitussive and bronchodilatory action which eases congestion and coughing by helping loosen and thin mucus in airways. Vasaka relieves dyspnea by dilating the airways and improves overall lung functions. The herb is an excellent supportive therapy for symptomatic relief in tuberculosis and pulmonary infections.

Indications

  • Productive cough
  • Bronchitis
  • Bronchial asthma

Contraindications:

None

Recommended dose:

One capsule, twice a day or as directed by your physician

Composition:

Each capsule contains 250mg extract of Vasaka

Note: Since Himalaya’s Pure Herbs are in capsule form, some children below 14 years may find it difficult to swallow them. For this reason, Pure Herbs are recommended for children ages 14 and above.

The information on this page is not intended to be a substitute for professional medical advice. Do not use this information to diagnose or treat your problem without consulting your doctor.

http://kumarncsirihbt.weebly.com/publications.html

Adhatoda Vasica (Justicia Adhatoda) – Malabar Nut, Vasa, Vasaka …

Adhatoda Vasica (Justicia Adhatoda) – Malabar Nut, Vasa, Vasaka, Adulsa

Presentation “Herbal drugs for health Herbal drugs for health …

slideplayer.com

… प्रयोग – पत्तियाँ खाँसी में Several alkaloids are present in the leaves and the chief principle is a quinazoline alkaloid vasicine

References

  1.  Nepali, Kunal; Sharma, Sahil; Ojha, Ritu; Dhar, Kanaya Lal (2012). “Vasicine and structurally related quinazolines”. Medicinal Chemistry Research 22 (1): 1–15. doi:10.1007/s00044-012-0002-5. ISSN 1054-2523.
  2.  Avula, B.; et al. (2008). “Quantitative determination of vasicine and vasicinone in Adhatoda vasica by high performance capillary electrophoresis” (PDF). Die Pharmazie – An International Journal of Pharmaceutical Sciences 63 (1): 20–22. doi:10.1691/ph.2008.7175.
  3. ^ Jump up to:a b Rajani, M; Soni, S; Anandjiwala, Sheetal; Patel, G (2008). “Validation of different methods of preparation of Adhatoda vasica leaf juice by quantification of total alkaloids and vasicine”. Indian Journal of Pharmaceutical Sciences 70 (1): 36. doi:10.4103/0250-474X.40329.ISSN 0250-474X.
Vasicine
Vasicine (peganine).png
Names
IUPAC name

1,2,3,9-Tetrahydropyrrolo[2,1-b]quinazolin-3-ol
Other names

Peganine
Identifiers
6159-56-4
Jmol interactive 3D Image
PubChem 72610
Properties
C11H12N2O
Molar mass 188.23 g·mol−1
Melting point 210 °C (410 °F; 483 K)
Solubility in acetone, alcohol, chloroform Soluble

//////

Share

WO 2016018024, DAPAGLIFLOZIN, HANMI FINE CHEMICAL CO., LTD, New patent

 PATENTS, Uncategorized  Comments Off on WO 2016018024, DAPAGLIFLOZIN, HANMI FINE CHEMICAL CO., LTD, New patent
Feb 082016
 

 

 

Dapagliflozin structure.svg

(S) – propylene glycol and water, 1: 1 crystalline complex

PATENT

WO2016018024, CRYSTALLINE COMPOSITE COMPRISING DAPAGLIFLOZIN AND METHOD FOR PREPARING SAME

HANMI FINE CHEMICAL CO., LTD. [KR/KR]; 59, Gyeongje-ro, Siheung-si, Gyeonggi-do 429-848 (KR)

KIM, Ki Lim; (KR).
PARK, Chulhyun; (KR).
LEE, Jaeheon; (KR).
CHANG, Young-kil; (KR)

The present invention relates to a crystalline composite comprising dapagliflozin and a method for preparing the same. More specifically, the present invention provides a novel crystalline composite comprising dapagliflozin, which is an SGLT2 inhibitor, and a preparing method capable of economically preparing the novel crystalline composite at high purity.

long period of time, there is a problem with secretion of insulin in diabetes is a problem with the function of insulin, or the two compounds problems of the disease that is to say maintaining a high blood sugar. Insulin helps the one that sends glucose into cells in order to replace the nutrients such as glucose that is in a hormone secreted by the beta cells of the pancreas blood into energy. However, if there is insufficient action of insulin, glucose accumulates in the blood does not enter the cell and cause the muscles and blood sugar, sugar in the urine is out. When these two long-standing high blood sugar will cause a number of microvascular complications. Not cut due to such complications, such as may result in blindness.
Worldwide diabetes has become one of the major causes of death in adults, an increasing number of diabetes patients may sharply with the increase of obesity population.
In diabetic patients SGLT2 (Sodium-Glucose linked transporter 2) selective inhibition of significant gastrointestinal side effects without increasing the emissions of glucose in the urine, thereby improving insulin sensitivity and delay the onset of diabetes complications by the normalization of plasma glucose can be there.
Bristol-to US Patent No. 6,515,117 of Myers Squibb Company of formula It discloses a binary) to dapa glyphs.
[Formula 1]
While preparing the material of Formula 1 in the above patent, the desired compound was obtained as an oil form, here was added to the chloroform under vacuum to reprocess getting the desired compound as a solid in a viscous that contains ethyl acetate. Compounds of the formula I obtained by the above method of production must be carried out the purification using a column, etc. because it can not remove the impurities of the desired compound, which is not suitable as an industrial method.
In addition, Bristol-to the US Patent 7,919,598 of Myers Squibb Company No. discloses a compound of formula 2.
[Formula 2]
Compounds of Formula 2 are the compounds of formula 1, (S) – propylene glycol and water, 1: 1 crystalline complex: 1. The compound of Formula 2 can be conveniently used in medicine to use by crystallizing the compound of formula 1 with low crystallinity and are also useful in the purification of the compounds of formula (I).
However, the compound of formula 2 is (S), the price is very expensive – and the use of propylene glycol, which results in increasing the production cost. This is very disadvantageous In the eyes of people with diabetes need to take the long-term.
In addition, European Patent No. 2597090 of Sandoz is disclosed of the formula monohydrate. Of the formula monohydrate is then stirred as a compound of the sugar alcohol and the formula of the glycol, glycerol, arabitol, xylitol, etc. in water obtained the seed (seed), by using this discloses a method for preparing the monohydrate in water, and have.
However, the European patent is described that the hydrate should be obtained stirred for three days at low temperature in order to obtain after obtaining the actual seed crystals, although not yield is mentioned is expected to be very low. For this reason, because of the situation in the research and development of novel crystalline complexes THE dapa glyphs are continually required.

Best Mode for Carrying out the Invention

Hereinafter, the present invention will be described in detail.
Crystalline complex according to the invention is for lowering the production cost by obtaining a product of high purity without the need for further purification, it has the structure of formula (3).
[Formula 3]

The crystalline complex is in the X- ray diffraction pattern of 9.7, 17.3, 20.0, 20.4, and may comprise a characteristic peak at a 2θ of 21.4 ± 0.2 °, preferably 9.7, 11.1, 13.7, 17.3, 18.7, 20.0, 20.4, 21.4, 27.5, 33.9, 36.2, 40.4 and 43.9 ± 0.2 °, and can include a peak at 2θ of teukjeongjik, it may be most preferably having a powder X-ray diffraction pattern is shown in Fig.
It was confirmed that the heat-absorption peak appears at about 163 ℃, to refer to the thermal analysis by; (DSC differential scanning calorimetr) The crystalline complex is differential scanning calorimetry of FIG.
The crystalline complex is the measured moisture content in accordance with the Karl-Fischer method can be 2-5%, preferably be 2.1 ~ 3.5%.
In addition, the present invention includes a mixture of 1), mannitol and the solvent to prepare a mannitol solution; 2) preparing an alcohol solution by mixing the alcohol with the glyph dapa gin; 3) mixing the mannitol solution and the alcohol solution, heating to 50 ~ 100 ℃; And 4) cooling the heated solution to 0 ~ 15 ℃ provides a method for preparing the crystalline complex comprising the steps of obtaining a composite having a crystalline structure of Formula 3.
It describes a method for producing crystalline complex according to the present invention;
Step 1: Mannitol solution prepared
Step 1 of the manufacturing method according to the present invention is a step in which a mixture of mannitol and a solvent to prepare a mannitol solution.
The mannitol is suitable for the manufacture of a therapeutic agent for diabetes to be taking a long period of time as a material that is widely used like medicine, food, with high stability and low price. Furthermore, mannitol is used in reducing the edema by osmotic action, and thus the material to promote diuresis. This is mannitol is determined to be helpful to the action Qin dapa glyphs used as SGLT-2 inhibitors.
The mannitol is typically so long that can be purchased and / or synthesis is not particularly limited, preferably the D- mannitol, L- and D · mannitol may include one or more of the group consisting of L- mannitol , and it can be most preferably D- Magny-tolyl.
The solvent as long as it can dissolve the mannitol is not particularly limited, and may preferably be water.
The Mani mixing ratio of the toll and the solvent. If the amount that can be dissolve the mannitol, the solvent is not particularly restricted, the preferably mannitol and solvent 1: 8-20 weight ratio or 1: 1 may be mixed with 10 to 15 weight .
Step 2: Preparation of an alcohol solution
Step 2 of the manufacturing method according to the invention by mixing the alcohol with Jean dapa glyph is a step for preparing the alcoholic solution.
In the glyph binary dapa may be prepared by the method described in commercially available, and arc carried US Patent 6,515,117 example G.
The alcohol is long as it can dissolve the THE dapa glyph is not particularly limited, preferably the C 1 ~ C 4 alcohol may comprise at least one of (a lower alcohol), and most preferably ethanol .
The dapa If the mixing ratio of the pictures and alcohol as a glyph is content that can be dissolved in THE dapa glyph to alcohol is not particularly limited, preferably the gin alcohol dapa glyphs 1: 3-8 or 1: a volume ratio of 6-7 It may be mixed.
Step 3: heat-up phase
Step 3 of the manufacturing method according to the present invention is a step in which the mani mixing and heating the solution and the alcohol solution toll.
The step is a process for producing a crystalline complex containing THE dapa glyphs included in mannitol as an alcohol solution that is included in the mannitol solution, the mixing ratio of the mixed solution and the alcohol solution is mannitol and the pro pageul a binary 1: 0.5-2 or 1: it is preferable to mix in 1.0 to 1.5 molar ratio.
The heating may preferably be carried out at 50 ~ 100 70 ~ 90 ℃ or ℃.
Step 4: obtained crystalline complexes
Step 4 according to the present invention is by cooling the heated solution to obtain a crystalline complex having the structure of Formula 3.
The cooling is preferably at 0 ~ 15 ℃ ℃ or 3 ℃ ~ 12 ℃.
Further, according to the embodiment of the present invention, in order to improve the speed of determining the crystalline complex to be obtained, the cooling after seeding may further include a (seeding) and further comprising cooling. The further cooling can preferably be carried out at 0 ~ 15 ℃ ℃ or 3 ℃ ~ 12 ℃ for 5 to 24 hours, or 7 ~ 15 hours.
The production method of the present invention as described above, dapa glyphs to binary and mannitol for the crystalline complex has the advantage that can be produced in more than 99.0% pure without further purification, including, of high purity at a low manufacturing cost crystalline It has the advantage of producing the composite.

Mode for the Invention

Hereinafter the present invention will be described in more detail by examples. However, these examples are for the purpose of illustrating the invention by way of example, but the scope of the present invention is limited to these Examples.
Example 1. Preparation of the crystalline complex
The D- mannitol 0.98g (5.4mmol) was dissolved in purified water to prepare a mannitol 12㎖. On the other hand, amorphous THE dapa glyphs (purity:> 94%, U.S. Patent No. 6,515,117 prepared by the method described in of Example G) was dissolved in 2g (4.9mmol) in ethanol to give the alcohol 13 ㎖ solution. After the mannitol solution at room temperature to give the mixed solution is added to the alcohol solution. The mixed solution was heated under reflux for 3 hours so that the 80 ℃. After the cooling the solution obtained through the reflux slowly to 10 ℃ for 2 hours and then added to camp in the dapa glyph to 4 wt% solution total weight compared to the seeding (seeding) for 12 hours at 200 rpm at 4 ℃ cooling and stirring was added. After Buchner funnel (Buchner funnel) and filtered with a filter paper 55 ㎜ and dried for 8 hours under nitrogen and 20 ℃ to obtain a crystalline complex 1.3g (45%).
Experimental Example 1. Structural analysis
Nuclear magnetic resonance spectrum (NMR) (400MHz FT-NMR Spectrometer (Varian, 400-MR)) of a crystalline complex obtained in Example 1 by using 1 yielded a H NMR spectrum, and the results, and in Fig. 1 It exhibited.
1 H NMR (400㎒, DMSO-d 6 ): δ 7.37-7.35 (d, 1H), 7.32-7.31 (d, 1H), 7.24-7.21 (dd, 1H), 7.10-7.08 (d, 2H), 6.83-6.81 (d, 2H), 4.97-4.95 (dd, 2H), 4.84-4.83 (d, 1H), 4.48-4.44 (t, 1H), 4.42-4.40 (d, 1H), 4.34-4.31 (t , 1H), 4.14-4.12 (d, 1H), 4.02-3.92 (m, 5H), 3.71-3.67 (m, 1H), 3.67-3.58 (m, 1H), 3.56-3.52 (t, 1H), 3.46 -3.35 (m, 3H), 3.28-3.07 (m, 4H), 1.31-1.27 (t, 3H)
The first through the results of 1 H NMR, and also, to the structure of a crystalline complex obtained in Example 1, it was confirmed that the formula (4).
[Formula 4]

Experimental Example 2. OK crystalline crystalline complexes
By performing an X-ray diffraction analysis and differential scanning calorimetry, it was confirmed that crystal form of the crystalline complex obtained in Example 1. More specifically, Diffraction Extensible Resource Descriptor (Brucker, USA) for use with X-ray diffraction (XRD) to perform, and differential scanning calorimetry (Differential scanning calorimeter; METTLER TOLEDO, Swiss) for use by differential scanning calorimetry (DSC) It was performed. Results of X-ray diffraction analysis results in Figure 1, the differential scanning calorimetry are shown in Fig.
Results of X-ray diffraction analysis, the crystalline complex according to an embodiment of the present invention exhibited a characteristic peak at 9.7, 11.1, 13.7, 17.3, 18.7, 20.0, 20.4, 21.4, 27.5, 33.9, 36.2, 40.4 and 2θ of 43.9 ° .
Experimental Example 3. HPLC analysis
To a crystalline complex obtained in Example 1 under the conditions of Table 1 and Table 2 it was carried out to HPLC (high performance liquid chromatography) analysis.

TABLE 1

column Ascentis Express RP-Amide 4.6mm × 150mm (diameter × height), 2.7㎛ (Aldrich)
The mobile phase A: Formic acid 1mL/1000mL in H 2 OB: Formic acid 1mL/1000mL in Acetonitrile (ACN)
Test Solution Acetonitrile Test specimen 5mg / 10mL in 50% (ACN)
Column temperature 25 ℃
Wavelength detector UV, 220nm
Dose 3 ㎕
Flow rate 0.7 mL / min
Operating hours 40 min

Table 2

Gradient systems
Time (min) Mobile phase A (%) Mobile phase B (%)
0 75 25
0-25 35 65
25-26 30 70
26-29 30 70
29-35 75 25
35-40 75 25
As described above, the results of the HPLC analysis, the crystalline complex of Example 1, it was confirmed that the purity of 99% or more. In addition, the crystalline complex of Example 1, it was confirmed that the water content measured by Karl-Fischer method of 2.9%.

Claims

To a crystalline complex comprising a dapa THE glyph having the structure of formula 3: [Formula 3]

According to claim 1, wherein said crystalline complex is in the X- ray diffraction pattern of 9.7, 11.1, 13.7, 17.3, 18.7, 20.0, 20.4, 21.4, 27.5, 33.9, 36.2, 40.4, and the characteristic peaks at 2θ of 43.9 ± 0.2 ° containing crystalline complexes.

According to claim 1, wherein said crystalline complex is the measured moisture content in accordance with the Karl-Fischer method which is characterized in that 2 to 5%, the crystalline complex.
1) preparing a mannitol solution by mixing mannitol (mannitol) and the solvent 2) a mixture of binary (dapagliflozin) and alcohol in dapa glyph for preparing an alcohol solution; 3) wherein the mannitol solution and the alcohol mixing the solution and heated to 50 ~ 100 ℃; And 4) the production method to cool the heated solution to 0 ~ 15 ℃ comprising the step of obtaining a polycrystalline composite having a structure of formula (3), a crystalline complex: [Formula 3]
[Claim 5]
According to claim 4, wherein the solvent is the production of water, the crystalline complex.
According to claim 4, wherein the alcohol is a C 1 ~ C 4, a method of producing a crystalline complex comprising at least one kind of alcohol.
According to claim 6, wherein the alcohol is ethanol, the method of the crystalline complex prepared.

According to claim 4, wherein the mixing ratio by the spirit and mannitol dapa glyph is 1: 0.5 to 2 mole ratio, the method of producing a crystalline complex.

FIGURES

Figure 1 illustrates a X- ray diffraction spectrum of the crystalline complex in accordance with an embodiment of the present invention.
2 is a result of the differential scanning calorimetry of the crystalline complexes (DSC) in accordance with an embodiment of the present invention.
3 is of the crystalline complex in accordance with an embodiment of the present invention 1 shows the H-NMR measurement results.
[Figure 1]

[Figure 2]

[Figure 3]

CEO, YOUNG KIL CHANG

/////////WO 2016018024, DAPAGLIFLOZIN, HANMI FINE CHEMICAL CO., LT, NEW PATENT

 

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO …..FOR BLOG HOME CLICK HERE

Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Facebook FACEBOOK

Join me on twitterFollow amcrasto on Twitter
Join me on google plus Googleplus

 amcrasto@gmail.com

Share

Facts, Growth, and Opportunities in Industrial Biotechnology

 Uncategorized  Comments Off on Facts, Growth, and Opportunities in Industrial Biotechnology
Jan 132016
 
Abstract Image

The revolution in synthetic biology has enabled innovative manufacture of biofuels and the development of biological processes for the manufacture of bulk and fine chemicals. This short review gives some examples of recent progress.

 

Facts, Growth, and Opportunities in Industrial Biotechnology

Industrial Biotechnology and Environmental, Biotechnology Industry Organization (BIO), 1201 Maryland Avenue, SW, Suite 900, Washington, DC 20024, United States
Org. Process Res. Dev., 2011, 15 (1), pp 175–179
DOI: 10.1021/op100312a
Publication Date (Web): December 7, 2010
Copyright © 2010 American Chemical Society
This article is part of the Biocatalysis special issue.

http://pubs.acs.org/doi/abs/10.1021/op100312a

//////////

 

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO …..FOR BLOG HOME CLICK HERE

Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Facebook FACEBOOK

Join me on twitterFollow amcrasto on Twitter
Join me on google plus Googleplus

 amcrasto@gmail.com

Share

Current Practices of Process Validation for Drug Substances and Intermediates

 PROCESS, regulatory  Comments Off on Current Practices of Process Validation for Drug Substances and Intermediates
Jan 132016
 
Abstract Image

Process validation includes laboratory optimization, pilot-plant introduction, and process implementation on manufacturing scale, as well as monitoring batches after implementation and continuously improving the manufacturing processes. There are many opportunities to change and optimize operations. The background information in this contribution describes current guidance and terminology for validation, including the integration of validation over the development lifecycle of drug substances. Various examples illustrate challenges and success stories of implementation as part of the overall approach to process validation.

 

Current Practices of Process Validation for Drug Substances and Intermediates

Anderson’s Process Solutions, 7400 Griffin Lane, Jacksonville, Oregon 97530, United States, Creative Innovation Partners, 1971 Western Avenue, Albany, New York 12203, United States, and Rib-X Pharmaceuticals Inc., 300 George Street, New Haven, Connecticut 06511, United States
Org. Process Res. Dev., 2011, 15 (1), pp 162–172
DOI: 10.1021/op1002825
Publication Date (Web): December 21, 2010
Copyright © 2010 American Chemical Society
* To whom correspondence should be addressed: E-mail: nganderson@dishmail.net., †

Creative Innovation Partners., ‡Rib-X Pharmaceuticals Inc.

http://pubs.acs.org/doi/abs/10.1021/op1002825

////////

Share

Twelve Principles for Drug Optimization

 DRUG DESIGN, drugs  Comments Off on Twelve Principles for Drug Optimization
Jan 092016
 

 

Twelve Principles for Drug Optimization
1. Increasing Potency
In the analogue class of the histamine H2-receptor antagonists (cimetidine, nizatidine, ranitidine, roxatidine, and famotidine), an increasing potency of the drug analogues can be observed. Famotidine is the most potent member of this class.
2. Improving the Ratio of the Main Activity to Adverse Affects
The pioneer drug of the adrenergic β-blockers is propranolol, which blocked both β1– and β2-receptors. However, blocking β2-receptors in asthma is harmful. Several selective blockers were developed and used in cardiology, such as atenolol, metoprolol, etc.

3. Improving the Physicochemical Properties with the Help of Analogues
Benzylpenicillin (penicillin G) was a pioneer antibiotic molecule, which could be administered only by intramuscular injection because of its acid-sensitivity. Through analogues, stable molecules were obtained and they could be given orally (e.g., ampicillin).

4. Decreasing Resistance to Anti-Infective Drugs
Resistance to anti-infective drugs has become an increasing problem all over the world. The widespread use of penicillin G led to an alarming increase of penicillin-G resistant Staphylococcus aureus infections in 1960. A solution to the problem was the design of penicillinase-resistant penicillins. Several examples show that analogues can also overcome the resistance to antifungal and antiviral drugs.

5 .Decreasing Resistance to Anticancer Agents
Imatinib is the pioneer drug for the treatment of chronic myelogenous leukemia. However, a significant number of patients develop resistance to imatinib. New analogues, such as dasatinib and nilotinib, have been introduced recently and it is hoped that these analogues will be effective in imatinib-resistant cases.

6. Improving Oral Bioavailability
A good oral bioavailability is necessary in most cases because the oral application of a drug is preferred to an injection therapy. Enalaprilat is an angiotensin-converting enzyme inhibitor which is used in intravenous administration for the treatment of hypertensive emergencies. Its ester prodrug has an excellent oral bioavailability, but it requires hydrolysis by esterases. Analogue-

based drug research afforded the lysylproline analogue, lisinopril, which has an acceptable bioavailability and it does not require metabolic activation.

7. Long-Acting Drugs for Chronic Diseases
Quaternary antimuscarinics are important drugs for the treatment of chronic obstructive pulmonary disease. Ipratropium bromide is a very active bronchodilator that is used several times daily. Its analogue is tiotropium with a longer duration of action which enables a once-daily dosing.

8. Ultrashort-Acting Drugs in Emergency Cases
Esmolol is an adrenergic β1-selective blocker with a very short duration of action. It is used when β-blockade of very short duration is desired in emergency situations.

9. Decreasing Interindividual Pharmacokinetic Differences
Omeprazole is a pioneer proton pump inhibitor that shows interindividual variability. Analogue-based drug discovery afforded pantoprazole with a linear, highly predictable pharmacokinetic property.

10. Decreasing Systemic Activities
For intranasal and inhalation applications of corticosteroids in the treatment of asthma and rhinitis, it is important to decrease the systemic availability of these drugs to avoid their adverse effects. Analogue research afforded budenoside and fluticasone with a low oral bioavailability.

11. Decreasing Drug Interactions with the Help of Analogues
Cimetidine inhibits CYPs, an important class of drug-metabolizing enzymes. This interaction inhibits the metabolism of certain drugs, such as propranolol, warfarin, diazepam, thus producing effects equivalent to an overdose of these medicines. These effects are avoided by analogues such as ranitidine and famotidine.

12. Synergistic Interactions between Analogues
Analogue-based drug research starting from ritonavir, which is an HIV-1 protease inhibitor, afforded the more potent lopinavir. However, it has a low plasma half- life. A combination of ritonavir and lopinavir is very successful, because ritonavir inhibits the P-450-mediated metabiolism of lopinavir.

 

Standalone Drugs Can Be Starting
Points for Drug Optimizations

We analyzed the Top 100 most frequently used drugs and nine standalone drugs were identified, that is, pioneer drugs for which there are no effective analogues. These are the following drugs: acetaminophen, acetylsalicylic acid, aripiprazole, bupropion, ezetimibe, lamotrigine, metformin, topiramate, and valproate semisodium.

Acetaminophen is one of the oldest drugs, which even nowadays has a broad application as an analgesic and antipyretic agent. However, acute overdose can cause severe hepatic damage.

Acetylsalicylic acid (aspirin) is also one of the oldest drugs and, contrary to acetaminophen, its mechanism of action is partly known: it irreversibly inhibits the cyclooxygenase-1 enzyme. A more potent derivative with a better adverse effect profile would be advantageous.

Aripiprazole is a relatively new antipsychotic drug which acts as a dopamine partial agonist for the treatment of schizophrenia. A more effective drug is needed for the treatment of refractory patients, to improve treatment of negative symptoms and cognitive dysfunction.

Bupropion is a unique antidepressant drug. It is the first non-nicotine medication for the treatment of smoking cessation.
Ezetimibe is a relatively new cholesterol absorption inhibitor. Its mechanism of action was discovered only recently (2005). Analogue-based drug research is underway.

Lamotrigine, topiramate, and valproate are widely used anticonvulsant drugs, whose mechanism of action is not known. Several efforts have been made to find better analogues, so far without positive results.

Metformin is already an old standalone drug for the treatment of type 2 diabetes. It is used alone or in combination with new antidiabetic agents. Its mechanism of action is not known which makes it difficult to conduct an analogue-based drug research.

 

/////////

Share

Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products

 PROCESS, SYNTHESIS  Comments Off on Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products
Jan 052016
 

 

Abstract Image

Recently, application of the flow technologies for the preparation of fine chemicals, such as natural products or Active Pharmaceutical Ingredients (APIs), has become very popular, especially in academia. Although pharma industry still relies on multipurpose batch or semibatch reactors, it is evident that interest is arising toward continuous flow manufacturing of organic molecules, including highly functionalized and chiral compounds. Continuous flow synthetic methodologies can also be easily combined to other enabling technologies, such as microwave irradiation, supported reagents or catalysts, photochemistry, inductive heating, electrochemistry, new solvent systems, 3D printing, or microreactor technology. This combination could allow the development of fully automated process with an increased efficiency and, in many cases, improved sustainability. It has been also demonstrated that a safer manufacturing of organic intermediates and APIs could be obtained under continuous flow conditions, where some synthetic steps that were not permitted for safety reasons can be performed with minimum risk. In this review we focused our attention only on very recent advances in the continuous flow multistep synthesis of organic molecules which found application as APIs, especially highlighting the contributions described in the literature from 2013 to 2015, including very recent examples not reported in any published review. Without claiming to be complete, we will give a general overview of different approaches, technologies, and synthetic strategies used so far, thus hoping to contribute to minimize the gap between academic research and pharmaceutical manufacturing. A general outlook about a quite young and relatively unexplored field of research, like stereoselective organocatalysis under flow conditions, will be also presented, and most significant examples will be described; our purpose is to illustrate all of the potentialities of continuous flow organocatalysis and offer a starting point to develop new methodologies for the synthesis of chiral drugs. Finally, some considerations on the perspectives and the possible, expected developments in the field are briefly discussed.

Two examples out of several in the publication discussed below……………

 

1  Diphenhydramine Hydrochloride

Figure
Scheme 1. Continuous Flow Synthesis of Diphenhydramine Hydrochloride
Diphenhydramine hydrochloride is the active pharmaceutical ingredient in several widely used medications (e.g., Benadryl, Zzzquil, Tylenol PM, Unisom), and its worldwide demand is higher than 100 tons/year.
In 2013, Jamison and co-workers developed a continuous flow process for the synthesis of 3minimizing waste and reducing purification steps and production time with respect to existing batch synthetic routes (Scheme 1). In the optimized process, chlorodiphenylmethane 1 and dimethylethanolamine 2 were mixed neat and pumped into a 720 μL PFA tube reactor (i.d. = 0.5 mm) at 175 °C with a residence time of 16 min. Running the reaction above the boiling point of 2and without any solvent resulted in high reaction rate. Product 3, obtained in the form of molten salt (i.e., above the melting point of the salt), could be easily transported in the flow system, a procedure not feasible on the same scale under batch conditions.
The reactor outcome was then combined with preheated NaOH 3 M to neutralize ammonium salts. After quenching, neutralized tertiary amine was extracted with hexanes into an inline membrane separator. The organic layer was then treated with HCl (5 M solution in iPrOH) in order to precipitate diphenhydramine hydrochloride 3 with an overall yield of 90% and an output of 2.4 g/h.

2 Olanzapine

Figure
Scheme 2. Continuous Flow Synthesis of Olanzapine
Atypical antipsychotic drugs differ from classical antipsychotics because of less side effects caused (e.g., involuntary tremors, body rigidity, and extrapyramidal effects). Among atypical ones, olanzapine 10, marketed with the name of Zyprexa, is used for the treatment of schizophrenia and bipolar disorders.
In 2013 Kirschning and co-workers developed the multistep continuous flow synthesis of olanzapine 10 using inductive heating (IH) as enabling technology to dramatically reduce reaction times and to increase process efficiency.(16) Inductive heating is a nonconventional heating technology based on the induction of an electromagnetic field (at medium or high frequency depending on nanoparticle sizes) to magnetic nanoparticles which result in a very rapid increase of temperature.As depicted in Scheme 2 the first synthetic step consisted of coupling aryl iodide 4 and aminothiazole 5 using Pd2dba3 as catalyst and Xantphos as ligand. Buchwald–Hartwig coupling took place inside a PEEK reactor filled with steel beads (0.8 mm) and heated inductively at 50 °C (15 kHz). AcOEt was chosen as solvent since it was compatible with following reaction steps. After quenching with distilled H2O and upon in-line extraction in a glass column, crude mixture was passed through a silica cartridge in order to remove Pd catalyst. Nitroaromatic compound 6 was then subjected to reduction with Et3SiH into a fixed bed reactor containing Pd/C at 40 °C. Aniline 7 was obtained in nearly quantitative yield, and the catalyst could be used for more than 250 h without loss of activity. The reactor outcome was then mixed with HCl (0.6 M methanol solution) and heated under high frequency (800 kHz) at 140 °C. Acid catalyzed cyclization afforded product 8 with an overall yield of 88%. Remarkably, the three step sequence did not require any solvent switch, and the total reactor volume is about 8 mL only.
The final substitution of compound 8 with piperazine 9 was carried out using a 3 mL of PEEK reactor containing MAGSILICA as inductive material and silica-supported Ti(OiPr)4 as Lewis acid. Heating inductively the reactor at 85 °C with a medium frequency (25 kHz) gave Olanzapine 10 in 83% yield.

SEE MORE IN THE PUBLICATION…………..

 

Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products

Dipartimento di Chimica, Università degli Studi di Milano Via Golgi 19, I-20133 Milano, Italy
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.5b00325
Publication Date (Web): November 26, 2015
Copyright © 2015 American Chemical Society

ACS Editors’ Choice – This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

Riccardo Porta

Riccardo Porta

 PhD Student
Dipartimento di Chimica, Università degli Studi di Milano Via Golgi 19, I-20133 Milano, Italy

Map of milan italy

 

 

//////////

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: