AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

Selectbio’s 4th International conference on Drug Discovery India 2016, 29-30 Sept 2016, Bengaluru, India

 Uncategorized  Comments Off on Selectbio’s 4th International conference on Drug Discovery India 2016, 29-30 Sept 2016, Bengaluru, India
Jun 292016
 

str1

Drug Discovery India 2016

Selectbio’s Drug Discovery India 2016, 29 – 30 September 2016, Bengaluru, India

see

https://selectbiosciences.com/conferences/index.aspx?conf=DDI16&se=india

str1

Overview

SELECTBIO is delighted to announce its 4th International Drug Discovery India 2016 Conference and Exhibition. This conference will be held in Le Méridien Bangalore Hotel, Bengaluru on September 29-30, 2016. The theme of the conference is “Deriving Best Out of Chemistry, Biotechnology and Natural Products“.

The event aims to expand knowledge by providing insights into the latest developments and innovations in the field of drug discovery, medicinal chemistry, natural products and chemical biology. Every year this event bring together about 200 drug discovery scientists together at a platform to discuss and share drug discovery related research and facilitates collaborations amongst scientists from across the globe.

This meeting will be co-located with our 2nd International Conference  Antibodies and Antibody Drug Conjugates. Registered delegates will have unrestricted access to all co-located meetings ensuring a comprehensive learning and sharing experience as well as being financially beneficial for attendees.

Running alongside the Drug Discovery India 2016 conference will be an Exhibition covering the latest technological advances within these fields. We look forward to welcoming you at the Drug Discovery India 2016 Conference and Exhibition and hope that the two days will be both informative and enjoyable.

Who Should Attend

Drug Discovery Scientists, Medicinal Chemists, Biotechnologists & Researchers from Pharmaceutical Industry R&D and Academic institutions working in the area of New Drug Discovery Research, Discovery and Development of New Chemical entities, Biomolecular Screening Technologies, Drug Target Identification, Structure-based and Target-based, Drug Design, Protein-Protein Interactions, Drug Repurposing, Orphan Drugs, Chemical Biology, Stem Cell, Epigenetics as well as Natural Products.

Conference Chair

Dr. Rathnam Chaguturu

Dr Rathnam Chaguturu
Founder & CEO, iDDPartners

 

 

 

Dr. Sanjay Bajaj, Ph.D.

Managing Director

Unit 21, Level 2, Berkeley Square, Plot 24,

Industrial Area Phase I, Chandigarh 160002, India

Phone: +91 172 5025050, M: +91 9814412082

Email: s.bajaj@selectbio.com; Website: www.selectbiosciences.com; www.selectbioindia.net

Upcoming Events in India

Show Calender 2016

3for2_emailsig.

http://selectbiosciences.com/iconferences/CS16.jpg

https://selectbiosciences.com/conferences/index.aspx?conf=DDI16&se=india

//////////Sanjay Bajaj, Selectbio, Drug Discovery India 2016, 29 – 30 September 2016, Bengaluru, India

Share

Copper(I)/N-Heterocyclic Carbene (NHC)-Catalyzed Addition of Terminal Alkynes to Trifluoromethyl Ketones for Use in Continuous Reactors.

 flow synthesis  Comments Off on Copper(I)/N-Heterocyclic Carbene (NHC)-Catalyzed Addition of Terminal Alkynes to Trifluoromethyl Ketones for Use in Continuous Reactors.
Jun 272016
 

Thumbnail image of graphical abstract

A copper(I)/N-heterocyclic carbene complex-catalyzed addition of terminal alkynes to trifluoromethyl ketones at low loading is described. The developed process functions well using a range of terminal alkynes but functions best when an aryl trifluoromethyl ketone is used. This substrate scope is well-suited for the production of active pharmaceutical ingredients (APIs) such as efavirenz. In this vein, we demonstrate that the described method can be translated into a flow process laying the framework for a completely continuous synthesis of efavirenz in the future.

Advanced Synthesis & Catalysis

Advanced Synthesis & Catalysis

Volume 355, Issue 18, pages 3517–3521, December 16, 2013

Adv. Synth. Catal. 2013, 355, 3517−3521.

Copper(I)/N-Heterocyclic Carbene (NHC)-Catalyzed Addition of Terminal Alkynes to Trifluoromethyl Ketones for Use in Continuous Reactors

  1. Camille A. Correia1,
  2. D. Tyler McQuade1,3,* and
  3. Peter H. Seeberger1,2

DOI: 10.1002/adsc.201300802, http://onlinelibrary.wiley.com/doi/10.1002/adsc.201300802/abstract

Correia, C. A., McQuade, D. T. and Seeberger, P. H. (2013), Copper(I)/N-Heterocyclic Carbene (NHC)-Catalyzed Addition of Terminal Alkynes to Trifluoromethyl Ketones for Use in Continuous Reactors. Adv. Synth. Catal., 355: 3517–3521. doi: 10.1002/adsc.201300802

Author Information

  1. 1Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
  2. 2Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
  3. 3Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA

*Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany

str1

 

/////////

Share

タバルマブ(遺伝子組換え) Tabalumab

 MONOCLONAL ANTIBODIES, Uncategorized  Comments Off on タバルマブ(遺伝子組換え) Tabalumab
Jun 272016
 

Tabalumab

 

タバルマブ(遺伝子組換え)
Tabalumab (Genetical Recombination)

[1143503-67-6]

Tabalumab (LY 2127399) is an anti-B-cell activating factor (BAFF) human monoclonal antibody designed for the treatment of autoimmune diseases and B cell malignancies.[1][2] Tabalumab was developed by Eli Lilly and Company.

A phase III clinical trial for rheumatoid arthritis was halted in Feb 2013.[3] In September 2014, a second phase III trial focussing on treating systemic lupus erythematosus, was terminated early as the study failed to meet its primary endpoint.[4]

 

References

 

 

abalumab
Monoclonal antibody
Type Whole antibody
Source Human
Target BAFF
Identifiers
CAS Number 1143503-67-6 
ATC code none
ChemSpider none
Chemical data
Formula C6518H10008N1724O2032S38
Molar mass 146.25 kg/mol

////////////タバルマブ ,  遺伝子組換え, Tabalumab, 1143503-67-6, antibody, Monoclonal antibody

Share

Review, Continuous Processing

 PROCESS, spectroscopy, SYNTHESIS, Uncategorized  Comments Off on Review, Continuous Processing
Jun 272016
 

Continuous Processing

 

Continuous production is a flow production method used to manufacture, produce, or process materials without interruption. Continuous production is called a continuous process or a continuous flow process because the materials, either dry bulk or fluids that are being processed are continuously in motion, undergoing chemical reactions or subject to mechanical or heat treatment. Continuous processing is contrasted with batch production.

Continuous usually means operating 24 hours per day, seven days per week with infrequent maintenance shutdowns, such as semi-annual or annual. Some chemical plants can operate for more than one or two years without a shutdown. Blast furnaces can run four to ten years without stopping.[1]

Production workers in continuous production commonly work in rotating shifts.

Processes are operated continuously for practical as well as economic reasons. Most of these industries are very capital intensive and the management is therefore very concerned about lost operating time.

Shutting down and starting up many continuous processes typically results in off quality product that must be reprocessed or disposed of. Many tanks, vessels and pipes cannot be left full of materials because of unwanted chemical reactions, settling of suspended materials or crystallization or hardening of materials. Also, cycling temperatures and pressures from starting up and shutting down certain processes (line kilns, boilers, blast furnaces, pressure vessels, etc.) may cause metal fatigue or other wear from pressure or thermal cycling.

In the more complex operations there are sequential shut down and start up procedures that must be carefully followed in order to protect personnel and equipment. Typically a start up or shut down will take several hours.

Continuous processes use process control to automate and control operational variables such as flow rates, tank levels, pressures, temperatures and machine speeds.[2]

Semi-continuous processes

Many processes such as assembly lines and light manufacturing that can be easily shut down and restarted are today considered semi-continuous. These can be operated for one or two shifts if necessary.

History

The oldest continuous flow processes is the blast furnace for producing pig iron. The blast furnace is intermittently charged with ore, fuel and flux and intermittently tapped for molten pig iron and slag; however, the chemical reaction of reducing the iron and silicon and later oxidizing the silicon is continuous.

Semi-continuous processes, such as machine manufacturing of cigarettes, were called “continuous” when they appeared.

Many truly continuous processes of today were originally batch operations.

The Fourdrinier paper machine, patented in 1799, was one of the earliest of the industrial revolution era continuous manufacturing processes. It produced a continuous web of paper that was formed, pressed, dried and reeled up in a roll. Previously paper had been made in individual sheets.

Another early continuous processes was Oliver Evans‘es flour mill (ca. 1785), which was fully automated.

Early chemical production and oil refining was done in batches until process control was sufficiently developed to allow remote control and automation for continuous processing. Processes began to operate continuously during the 19th century. By the early 20th century continuous processes were common.

Shut-downs

In addition to performing maintenance, shut downs are also when process modifications are performed. These include installing new equipment in the main process flow or tying-in or making provisions to tie-in sub-processes or equipment that can be installed while the process is operating.

Shut-downs of complicated processes may take weeks or months of planning. Typically a series of meetings takes place for co-ordination and planning. These typically involve the various departments such as maintenance, power, engineering, safety and operating units.

All work is done according to a carefully sequenced schedule that incorporates the various trades involved, such as pipe-fitters, millwrights, mechanics, laborers, etc., and the necessary equipment (cranes, mobile equipment, air compressors, welding machines, scaffolding, etc.) and all supplies (spare parts, steel, pipe, wiring, nuts and bolts) and provisions for power in case power will also be off as part of the outage. Often one or more outside contractors perform some of the work, especially if new equipment is installed.

Safety

Safety meetings are typically held before and during shutdowns. Other safety measures include providing adequate ventilation to hot areas or areas where oxygen may become depleted or toxic gases may be present and checking vessels and other enclosed areas for adequate levels of oxygen and insure absence of toxic or explosive gases. Any machines that are going to be worked on must be electrically disconnected, usually through the motor starter, so that it cannot operate. It is common practice to put a padlock on the motor starter, which can only be unlocked by the person or persons who is or are endangered by performing the work. Other disconnect means include removing couplings between the motor and the equipment or by using mechanical means to keep the equipment from moving. Valves on pipes connected to vessels that workers will enter are chained and locked closed, unless some other means is taken to insure that nothing will come through the pipes.

Continuous processor (equipment)

Continuous Production can be supplemented using a Continuous Processor. Continuous Processors are designed to mix viscous products on a continuous basis by utilizing a combination of mixing and conveying action. The Paddles within the mixing chamber (barrel) are mounted on two co-rotating shafts that are responsible for mixing the material. The barrels and paddles are contoured in such a way that the paddles create a self-wiping action between themselves minimizing buildup of product except for the normal operating clearances of the moving parts. Barrels may also be heated or cooled to optimize the mixing cycle. Unlike an extruder, the Continuous Processor void volume mixing area is consistent the entire length of the barrel ensuring better mixing and little to no pressure build up. The Continuous Processor works by metering powders, granules, liquids, etc. into the mixing chamber of the machine. Several variables allow the Continuous Processor to be versatile for a wide variety of mixing operations:[3]

  1. Barrel Temperature
  2. Agitator speed
  3. Fed rate, accuracy of feed
  4. Retention time (function of feed rate and volume of product within mixing chamber)

Continuous Processors are used in the following processes:

  • Compounding
  • Mixing
  • Kneading
  • Shearing
  • Crystallizing
  • Encapsulating

The Continuous Processor has an unlimited material mixing capabilities but, it has proven its ability to mix:

  • Plastics
  • Adhesives
  • Pigments
  • Composites
  • Candy
  • Gum
  • Paste
  • Toners
  • Peanut Butter
  • Waste Products

EXAMPLE…………….

 

 

Abstract Image

In the development of a new route to bendamustine hydrochloride, the API in Treanda, the key benzimidazole intermediate 5 was generated via catalytic heterogeneous hydrogenation of an aromatic nitro compound using a batch reactor. Because of safety concerns and a site limitation on hydrogenation at scale, a continuous flow hydrogenation for the reaction was investigated at lab scale using the commercially available H-Cube. The process was then scaled successfully, generating kilogram quantities on the H-Cube Midi. This flow process eliminated the safety concerns about the use of hydrogen gas and pyrophoric catalysts and also showed 1200-fold increase in space–time yield versus the batch processing.

Improved Continuous Flow Processing: Benzimidazole Ring Formation via Catalytic Hydrogenation of an Aromatic Nitro Compound

Org. Process Res. Dev., 2014, 18 (11), pp 1427–1433
Figure

EXAMPLE…………….


Correia et al. have published a three-step flow synthesis of rac-Effavirenz. This short synthetic route begins with cryogenic trifluoroacetylation of 1,4-dichlorobenzene. After quench and removal of morpholine using silica gel, this intermediate could either be isolated, or the product stream could be used directly in the next alkynylation step. Nucleophilic addition of lithium cyclopropylacetylide to the trifluoroacetate gave the propargyl alcohol intermediate in 90% yield in under 2 min residence time. This reaction was temperature-sensitive, and low temperatures were required to minimize decomposition. Again silica gel proved effective in the quench of the reaction. However, residual alkyne and other byproducts were difficult to remove. Thus, isolation of this intermediate was performed to minimize the impact of impurities on the final copper catalyzed cyanate installation/cyclization step to afford Effavirenz. Optimization of this step in batch mode for both copper source and ligand identified Cu(NO3)2 and CyDMEDA in a 1:4 molar ratio (20 mol % and 80 mol %, respectively) produced the product in 60% yield. Adaptation of this procedure to flow conditions resulted in poor conversion due to slow in situ reduction of the Cu(II) to Cu(I). Thus, a packed bed reactor of NaOCN and Cu(0) was used. Under these conditions, the ligand and catalyst loading could be reduced without compromising yield. Due to solubility limitations of Cu(NO3)2, Cu(OTf)2 was used with CyDMEDA in 1:2 molar ratio (5 mol % and 10 mol % loading, respectively). Under these optimized conditions, rac-Effavirenz was obtained in 62% isolated yield in reaction time of 1 h. This three-step process provides 45% overall yield of rac-Effavirenz and represents the shortest synthesis of this HIV drug reported to date
STR1
STR1
1H NMR (400 MHz, CDCl3, ppm) δ9.45 (s, 1H), 7.49 (s, 1H), 7.35 (dd, J = 8.5, 1.5 Hz, 1H), 6.86 (d, J = 8.5 Hz, 1H), 1.43-1.36 (m, 1H); 0.93-0.85 (m, 4H);
STR1
13C NMR (100 MHz, CDCl3, ppm) δ 149.2, 133.2, 131.7, 129.2, 127.8, 122.1 (q, JC-F = 286 Hz), 116.3, 115.1, 95.9, 79.6 (q, JC-F = 35 Hz), 66.1, 8.8, 0.6;
STR1
19F NMR (376 MHz, CDCl3, ppm) δ -80.98.
1 T. J. Connolly; A. W.-Y Chan; Z. Ding; M. R. Ghosh; X. Shi; J. Ren, E. Hansen; R. Farr; M. MacEwan; A. Alimardanov; et al, PCT Int. Appl. WO 2009012201 A2 20090122, 2009.
2 (a) Z. Dai, X. Long, B. Luo, A. Kulesza, J. Reichwagen, Y. Guo, (Lonza Ltd), PCT Int. Appl. WO2012097510, 2012; (b) D. D. Christ; J. A. Markwalder; J. M. Fortunak; S. S. Ko; A. E. Mutlib; R. L. Parsons; M. Patel; S. P. Seitz, PCT Int. Appl. WO 9814436 A1 19980409, 1998 (c) C. A. Correia; D. T. McQuade; P. H. Seeberger, Adv. Synth. Catal. 2013, 355, 3517−3521.

A Concise Flow Synthesis of Efavirenz

  • DOI: 10.1002/anie.201411728
SUPP INFO
STR1
STR1

 NEXT EXAMPLE…………….

 

Wang et al. developed a flow process that uses metal catalyzed hydrogenation of NAB (2-nitro-2′-hydroxy-5′-methylazobenzene) to BTA (2-(2′-hydroxy-5′-methylphenyl)benzotriazole), a commonly used ultraviolet absorber. The major challenge in this process was to optimize the reduction of the diazo functionality over the nitro group and control formation of over reduction side products. The initial screen of metals adsorbed onto a γ-Al2O3 support indicated Pd to be superior to the other metals and also confirmed that catalyst preparation plays an important role in selectivity. To better understand the characteristics of the supported metal catalyst systems, the best performing were analyzed by TEM, XRD, H2-TPR, and N2 adsorption–desorption. Finally, solvents and bases were screened ultimately arriving at the optimized conditions using toluene, 2 equiv n-butylamine over 1% Pd/Al2O3, which provided 90% yield BTA in process with 98% conversion. The process can run over 200 h without a decrease in performance
( ACS Sustainable Chem. Eng. 2015, 3,1890−1896)
.
Abstract Image

The synthesis of 2-(2′-hydroxy-5′-methylphenyl)benzotriazole from 2-nitro-2′-hydroxy-5′-methylazobenzene over Pd/γ-Al2O3 in a fixed-bed reactor was investigated. Pd/γ-Al2O3 catalysts were prepared by two methods and characterized by XRD, TEM, H2-TPR, and N2 adsorption–desorption. Employed in the above reaction, the palladium catalyst impregnated in hydrochloric acid exhibited much better catalytic performance than that impregnated in ammonia–water, which was possibly attributed to the better dispersion of palladium crystals on γ-Al2O3. This result demonstrated that the preparation process of the catalyst was very important. Furthermore, the reaction parameters were optimized. Under the optimized conditions (toluene, NAB/triethylamine molar ratio 1:2, 60 °C, 2.5 MPa hydrogen pressure, 0.23 h–1 liquid hourly space velocity), about 90% yield of 2-(2′-hydroxy-5′-methylphenyl)benzotriazole was obtained. Finally, the time on stream performance of the catalyst was evaluated, and the reaction could proceed effectively over 200 h without deactivation of the catalyst.

Construction of 2-(2′-Hydroxy-5′-methylphenyl)benzotriazole over Pd/γ-Al2O3 by a Continuous Process

ACS Sustainable Chem. Eng., 2015, 3 (8), pp 1890–1896
DOI: 10.1021/acssuschemeng.5b00507
Publication Date (Web): July 06, 2015

NEXT EXAMPLE…………….

 

Continuous Flow-Processing of Organometallic Reagents Using an Advanced Peristaltic Pumping System and the Telescoped Flow Synthesis of (E/Z)-Tamoxifen

continuous flow processing of organometallic reagents

A new enabling technology for the pumping of organometallic reagents such as n-butyllithium, Grignard reagents, and DIBAL-H is reported, which utilises a newly developed, chemically resistant, peristaltic pumping system. Several representative examples of its use in common transformations using these reagents, including metal–halogen exchange, addition, addition–elimination, conjugate addition, and partial reduction, are reported along with examples of telescoping of the anionic reaction products. This platform allows for truly continuous pumping of these highly reactive substances (and examples are demonstrated over periods of several hours) to generate multigram quantities of products. This work culminates in an approach to the telescoped synthesis of (E/Z)-tamoxifen using continuous-flow organometallic reagent-mediated transformations.

https://www.vapourtec.com/flow-chemistry-resource-centre/publications-citing-vapourtec/continuous-flow-processing-of-organometallic-reagents-using-an-advanced-peristaltic-pumping-system-and-the-telescoped-flow-synthesis-of-ez-tamoxifen/

 

NEXT EXAMPLE…………….

 

Multi-step Continuous Flow Pyrazole Synthesis via a Metal-free Amine-redox Process

A versatile multi-step continuous flow synthesis for the preparation of substituted pyrazoles is presented.

The automated synthesis utilises a metal-free ascorbic acid mediated reduction of diazonium salts prepared from aniline starting materials followed by hydrolysis of the intermediate hydazide and cyclo-condensation with various 1,3-dicarbonyl equivalents to afford good yields of isolated functionalised pyrazole products.

The synthesis of the COX-2 selective NSAID was demonstrated using this approach.

NEXT EXAMPLE…………….

 

Synthesis of a Precursor to Sacubitril Using Enabling Technologies

Continuous flow methodologyhas been used to enhance several steps in the synthesis of a precursor to Sacubitril.

In particular, a key carboethoxyallylation benefited from a reducedprocessing time and improved reproducibility, the latter attributable toavoiding the use of a slurry as in the batch procedure. Moreover, in batchexothermic formation of the organozinc species resulted in the formation ofside products, whereas this could be avoided in flow because heat dissipationfrom a narrow packed column of zinc was more efficient

NEXT EXAMPLE…………….

 

RAFT RAFT (Reversible Addition Fragmentation chain Transfer), a type of controlled radical polymerization, was invented by CSIRO in 1998 but developed in partnership with DuPont over a long term collaboration. Conventional polymerisation is fast but gives a wide distribution of polymer chain lengths. (known as a high polydispersity index ). RAFT is more versatile than other living polymerization techniques, such as atom transfer radical polymerization (ATRP) or nitroxide-mediated polymerization (NMP), it not only leads to polymers with a low polydispersity index and a predetermined molecular weight, but it permits the creation of complex architectures, such as linear block copolymers, comblike, star, brush polymers and dendrimers. Monomers capable of polymerizing by RAFT include styrenes, acrylates, acrylamides, and many vinyl monomers. CSIRO is the owner of the RAFT patents and is actively commercialising the technology. There are 12 licences in force and CSIRO is pursuing interest in a number of fields including human health, agriculture, animal health and personal care. RAFT is the dominant polymerization technique for the creation of polymer-protein or polymer-drug conjugates, permitting (for example) the combination of a polymer exhibiting high solubility with a drug molecule with poor solubility.. Though RAFT can be carried out in batch, it also lends itself to continuous flow processing, as this processing method offers an easy and reproducible scale-up route of the oxygen sensitive RAFT process. The possibility to effectively exclude oxygen using continuous flow reactors in combination with inline degassing methods offers advantages over batch processing at scales beyond the laboratory environment. Challenges associated with the high viscosity of the polymer product solution can be controlled using pressuriseable continuous flow reactor systems. http://www.csiro.au/products/RAFT.html
STR1

Examples………..

Cyclohexaneperoxycarboxylic acid (6,  has been developed as a safe, inexpensive oxidant, with demonstrated utility in a Baeyer−Villiger rearrangement.34 Solutions of cyclohexanecarboxylic acid in hexane and 50% aqueous H2O2 were continuously added to 45% H2SO4 at 50−70 °C and slightly reduced pressure. The byproduct H2O was removed azeotropically, and the residence time in the reactor was 3 h. Processing was adjusted to maintain a concentration of 6 at 17−19%, below the detonable level, and the product was kept as a stable solution in hexane. These operations enhanced the safety margin in preparing 6.

figure

Scheme .  Generation of cyclohexaneperoxycarboxylic acid

Examples………..

Abstract Image

The conversion of a batch process to continuous (flow) operation has been investigated. The manufacture of 4,d-erythronolactone at kilogram scale was used as an example. Fully continuousprocessing was found to be impracticable with the available plant because of the difficulty in carrying out a multiphase isolation step continuously, so hybrid batch–continuous options were explored. It was found that very little additional laboratory or process safety work other than that required for the batch process was required to develop the hybrid process. A hybrid process was chosen because of the difficulty caused by the precipitation of solid byproduct during the isolation stage. While the project was a technical success, the performance benefits of the hybrid process over the batch were not seen as commercially significant for this system.

Multikilogram Synthesis of 4-d-Erythronolactone via Batch andContinuous Processing

Org. Process Res. Dev., 2012, 16 (5), pp 1003–1012

 

Examples………..

Abstract Image

Continuous Biocatalytic Processes

Org. Process Res. Dev., 2009, 13 (3), pp 607–616
Figure
Scheme . Biotransformation of sodium l-glutamate to γ-aminobutyric acid (GABA) by single-step α-decarboxylation with glutamate decarboxylase

PICS…………..

References

  1.  American Iron and Steel Institute
  2.  Benett, Stuart (1986). A History of Control Engineering 1800-1930. Institution of Engineering and Technology. ISBN 978-0-86341-047-5.
  3.  Ziegler, Gregory R.; Aguilar, Carlos A. (2003). “Residence Time Distribution in a Co-rotating, Twin-screw Continuous Mixer by the Step Change Method”. Journal of Food Engineering(Elsevier) 59 (2-3): 1–7.

Sources and further reading

  • R H Perry, C H Chilton, C W Green (Ed), Perry’s Chemical Engineers’ Handbook (7th Ed), McGraw-Hill (1997), ISBN 978-0-07-049841-9
  • Major industries typically each have one or more trade magazines that constantly feature articles about plant operations, new equipment and processes and operating and maintenance tips. Trade magazines are one of the best ways to keep informed of state of the art developments.
Share

A Review on the Applications of Self Regenerating Catalysts

 SYNTHESIS  Comments Off on A Review on the Applications of Self Regenerating Catalysts
Jun 272016
 

Page Header

A Review on the Applications of Self Regenerating Catalysts

Ronak Upadhyay, Shaaz Khatib, Atmin Parekh\
Ronak Upadhyay

Abstract

Metallic catalysts have a tendency to lose their activity over time due to various reasons such as change in oxidation state of the metal, deposition of material on the catalyst or structural rearrangement of the catalysts. Metallic catalysts (such as Pt based catalysts) are often rare and expensive. Therefore, there is currently an interest in developing self-regenerating catalysts which independently recover their activity after deactivation without human intervention and which thus have a high turnover number. Our aim is to review the applications of these catalysts and study their mechanism of regeneration in various systems. Perovskites based catalyst systems have shown indication that they can be used instead of the conventional catalyst used in the automobiles to treat exhaust gases, in a cost effective manner. A modification of the crystallographic structure has enhanced the regenerative ability of cobalt nanoparticles, have found application in the Fischer Tropsch Synthesis. Self-healing non precious metal-based catalyst provides an economic alternative in hydrogen production by water splitting with sunlight as the main energy source. Palladium based self-healing catalysts are used in CO detection devices. ‘Kearby’ Catalyst, a self-regenerating catalyst used in the preparation of the vinyl monomers via catalytic dehydrogenation.

 

more……….

////////////self-regenerating,  Perovskites,  Kearby catalyst,  Fischer Tropsch Synthesis,  CO detection,  Vinyl monomers

Share

WO 2016092561, Ivacaftor, New patent, Laurus Labs Pvt Ltd

 PATENTS  Comments Off on WO 2016092561, Ivacaftor, New patent, Laurus Labs Pvt Ltd
Jun 272016
 

Ivacaftor.svg

 

WO-2016092561, Ivacaftor, NEW PATENT

https://www.google.com/patents/WO2016092561A2?cl=en

Novel polymorphs of ivacaftor, process for its preparation and pharmaceutical composition thereof

Laurus Labs Pvt Ltd

LAURUS LABS PRIVATE LIMITED [IN/IN]; Plot No. DS1, IKP Knowledge Park, Genome Valley Turkapally, Shameerpet Mandal, Ranga District Hyderabad 500078 (IN)

 

Ram Thaimattam, Venkata Srinivasa Rao DAMA, Venkata Sunil Kumar Indukuri, Seeta Rama Anjaneyulu GORANTLA,Satyanarayana Chava
Applicant Laurus Labs Private Limited

 

THAIMATTAM, Ram; (IN).
DAMA, Venkata Srinivasa Rao; (IN).
INDUKURI, Venkata Sunil Kumar; (IN).
GORANTLA, Seeta Rama Anjaneyulu; (IN).
CHAVA, Satyanarayana; (IN)

Novel crystalline forms of ivacaftor (designated as forms L1 to L14), processes for their preparation and composition comprising them are claimed.

Vertex, in research collaboration with Cystic Fibrosis Foundation Therapeutics, had developed and launched ivacaftor.

Ivacaftor, also known as N-(2,4-di-tert-butyl-5-hydroxyphenyl)-l,4-dihydro-4-oxoquinoline-3-carboxamide, having the following Formula I:

Formula I

Ivacaftor was approved by FDA and marketed by Vertex pharma for the treatment of cystic fibrosis under the brand name KALYDECO® in the form of 150 mg oral tablets.

WO2006/002421 publication discloses modulators of ATP-binding cassette transporters such as ivacaftor. This patent generally discloses a process for the preparation of modulators of ATP-binding cassette transporters such as quinoline compounds; however, specific process for the preparation of ivacaftor and its solid state details were not specifically disclosed.

WO2007/079139 publication discloses Form A, Form B and amorphous form of ivacaftor characterized by PXRD, DSC and TGA and process for their preparation. Further this publication discloses ethanol crystalate of ivacaftor in example part.

WO2009/038683 publication discloses the solid forms of ivacaftor, which are designated as Form-I (2-methylbutyric acid), Form-II (propylene glycol), Form-HI (PEG400.KOAc), Form-IV (lactic acid), Form-V (isobutyric acid), Form-VI (propionic

acid), Form- VII (ethanol), Form- VIII (2-propanol), Form-IX (monohydrate), Form-X (besylate Form A), Form-XI (besylate Form B), Form-XII (besylate Form D), Form-XIII (besylate Form E), Form-XIV (besylate Form F), Form-XV (besylate (2: 1)), Form-XVI (besylate mono hydrate). This publication also discloses the characterization details like PXRD, DSC and TGA for the above forms and process for their preparation.

WO201 1/1 16397 publication discloses crystalline Form C of ivacaftor, process for its preparation and pharmaceutical composition comprising the same. Also discloses characterization details of Form C, such as PXRD, IR, DSC and 13CSSNMR.

WO2013/158121 publication discloses solvated forms of ivacaftor, which are designated as Form D (acetonitrile or acetonitrile/water (75/25) solvate), Form E (Methyl ethyl ketone (MEK), MEK/water (90/1), MEK/water (90/10), MEK/water (80/20) solvate), Form F (acetonitrile/water (75/25) solvate), Form G (isopropyl acetate solvate), Form H (isopropyl acetate/water (95/5) solvate), Form I (MEK solvate), Form J (MEK/water (99/1) solvate), Form K (MEK or MEK/water (99/1) or MEK/water (90/10) or MEK/water (80/20) solvate), Form L (isopropyl acetate/water (95/5) solvate), Form M (MEK or MEK/water (99/1) solvate), Form N (MEK water (90/10) or MEK/water (80/20) solvate), Form O (MEK or MEK/water (99/1) solvate), Form P (MEK water (90/10) or MEK water (80/20) solvate), Form Q (MEK/water (80/20) solvate), Form R (acetonitrile solvate), Form S (MEK/water (80/20) solvate), Form T (isopropyl acetate/water (95/5) solvate), Form W (acetonitrile/water (90/10) solvate), Form XX (from 10% water/ acetonitrile) and hydrate B (hydrated form). This patent further discloses characterization details like PXRD and TGA for the above forms and process for their preparation.

WO2014/118805 publication discloses crystalline forms of ivacaftor designated as Form D, Form E, Form El, Form G and Form G’; amorphous ivacaftor designated as Form I and Form II; crystalline ivacaftor solvates such as n-butanol solvate, methanol solvate, propylene glycol solvate, DMF solvate, THF solvate, DMF:ethylacetate solvate. This publication further discloses the process for the preparation of said forms along with their characterization details.

WO2015/070336 publication discloses polymorphic form APO-I and MIBK solvate of ivacaftor along with its characteristic PXRD details, process for its preparation and pharmaceutical composition comprising them.

CN 104725314A publication discloses ivacaftor new polymorph D, which is obtained by crystallization of ivacaftor from acetonitrile/water. This publication further discloses characteristic details such PXRD, IR and DSC of ivacaftor new polymorph D.

Polymorphism is the occurrence of different crystalline forms of a single compound and it is a property of some compounds and complexes. Thus, polymorphs are distinct solids sharing the same molecular formula, yet each polymorph may have distinct physical properties. Therefore, a single compound may give rise to a variety of polymorphic forms where each form has different and distinct physical properties, such as different solubility profiles, different melting point temperatures and/or different x-ray diffraction peaks. Since the solubility of each polymorph may vary, identifying the existence of pharmaceutical polymorphs is essential for providing pharmaceuticals with predictable solubility profiles. It is desirable to investigate all solid state forms of a drug, including all polymorphic forms and solvates, and to determine the stability, dissolution and flow properties of each polymorphic form.

Polymorphic forms and solvates of a compound can be distinguished in a laboratory by X-ray diffraction spectroscopy and by other methods such as, infrared spectrometry. Additionally, polymorphic forms and solvates of the same drug substance or active pharmaceutical ingredient, can be administered by itself or formulated as a drug product (also known as the final or finished dosage form), and are well known in the pharmaceutical art to affect, for example, the solubility, stability, flowability, tractability and compressibility of drug substances and the safety and efficacy of drug products.

The discovery of new polymorphic forms and solvates of a pharmaceutically useful compound, like ivacaftor, may provide a new opportunity to improve the performance characteristics of a pharmaceutical product. It also adds to the material that a formulation scientist has available for designing, for example, a pharmaceutical dosage form of a drug with a targeted release profile or other desired characteristic. New polymorphic forms of the ivacaftor have now been discovered and have been designated as ivacaftor Form-Ll, Form-L2, Form-L3, Form-L4, Form-L5, Form-L6, Form-L7, Form-L8, Form-L9, Form-LlO, Form-Ll 1, Form-Ll 2 A, Form-Ll 2B, Form-Ll 3 and Form-Ll 4.

EXAMPLE 1 : Preparation of Ivacaftor Form-Ll

A suspension of ivacaftor ethanolate (5 g) in n-heptane (200 mL) was heated to 95-100°C and stirred for 5 hrs at the same temperature. Then the reaction mixture was cooled to 25-35°C and stirred for an hour. The solid obtained was filtered, washed with n-heptane and suck dried. The wet solid was further dried at 60-65°C for 16 hrs under vacuum yielded ivacaftor Form-Ll . The XRPD is set forth in Figure- 1.

In a similar manner, ivacaftor Form-Ll was prepared from different solvates of ivacaftor in place of ivacaftor ethanolate as input using the following conditions;

Ivacaftor cyclopentyl methyl ether (0.5 g) n-heptane (20 mL) 50°C/8 hr

Ivacaftor methyltertiarybutyl ether (0.5 g) n-heptane (20 mL) 50°C/8 hr

Laurus Labs: A hot startup in the pharma sector

Dr Satyanarayana Chava
Chief executive officer (CEO)

When Dr Satyanarayana Chava started Laurus Labs in 2007, he invested nearly Rs 60 crore of his own money into it. His confidence in its success was neither bravado nor bluster, but defined by his knowledge of the pharmaceutical industry. Eight years on, the Hyderabad-based company is on track to reach revenues of Rs 2,000 crore by the end of FY2016.

Chava, now 52, has more than two decades of experience in the pharmaceutical industry; in his last job, he was chief operating officer (COO) of the successful startup, Matrix Laboratories. Of his 10 years there, he says with pride, “I never skipped a promotion and got to work in all departments.” His dedication, coupled with a sound understanding of what it takes to start a pharmaceutical company, is what makes Laurus Labs among the hottest startups in this sector.

Initially, Chava planned the business around research and development (R&D). He wanted Laurus Labs to focus on contract research and make money from royalties. “In India, companies start with manufacturing and then get into R&D,” he explains. “I did it the other way round.” He focussed his fledgling company’s resources on developing formulations for medicines, and licensed them to other pharmaceutical players. In the early months, Laurus Labs had 10 people in manufacturing and 300 in R&D.

In June 2007, Aptuit, a US-based contract research organisation (CRO), signed it on for a $20 million (then Rs 80 crore) contract. But despite this injection of funds, Chava was unable to sustain his original idea of developing technologies for other companies. At the time of the Aptuit deal, Laurus Labs’s annual revenues were not even $20,000 (Rs 8 lakh at the time). In 2008, Chava decided to start manufacturing active pharmaceutical ingredients (API), which, as the name suggests, are chemicals or key ingredients in drugs required to make the medication work. His early investment into R&D benefitted Laurus Labs; it maintains a large repository of research-based knowledge that forms the bedrock of any successful pharmaceutical business.

Today, it is a key manufacturer supplier of APIs and holds its own against better-known competitors like US generic drug giant Mylan, which, incidentally, acquired a controlling stake in Matrix around the time Chava founded Laurus Labs. It has also carved a niche for itself by supplying antiretroviral or ARVs (used to fight infections caused by retroviruses like HIV) and oncology drugs. And despite being a relatively new player, its clients include giants like Pfizer, Teva Pharmaceutical Industries and Merck.

The person behind it
A Master’s degree in chemistry was never on the cards for Chava. In the early 1980s, the best students usually studied physics, and he had planned to do the same. But when he went to his college in Amravati (Andhra Pradesh) to enroll, his elder sister’s friend suggested he study chemistry too. Chava took up the subject on a whim. He ended up liking chemistry so much so that in his final year he topped his batch despite not having written one out of the four required papers. He went on to complete his PhD in the subject in 1991.

Upon graduating, he was hired by Ranbaxy Laboratories in Delhi as a researcher. In those early years itself Chava knew he’d spend a lifetime in the industry. He enjoyed the work and gained valuable experience as a young researcher in what was then India’s finest pharmaceutical company.

But through his years in the industry, Chava was conscious of the fact that he needed to broaden his experience outside of research. His stint at Matrix Laboratories afforded him that opportunity. As it was a startup, he was able to rise through the ranks quickly and got the opportunity to work in key departments from sales and marketing to finance and accounts. Within eight years of joining Matrix, he became its COO.

This experience was to come in handy when, due to differences with the board—he refused to elaborate on this—he decided to leave Matrix and set up Laurus Labs. And though he is the company’s chief executive officer (CEO), Chava remains true to his calling as a chemist. He has strived to build an organisation that is not very hierarchical. It is not uncommon to see him interacting with the chemists in the company and discussing formulations with them—something unheard of in an industry where most CEOs are from a sales and marketing background.

 

 

Chandrakanth Chereddi

VP Synthesis Business Unit

Prior to his current assignment at Laurus Labs India, Chandra headed the Project Management division for all scientific projects at the Laurus R&D center. Chandra previously worked for McKinsey & Company in India as a member of the healthcare practice and at Google Inc. as a software engineer in Google’s Mountain View, CA office. Chandra holds a BE from the College of Engineering, Osmania University, Hyderabad, and MS from University of Illinois at Urbana-Champaign, and an MBA from Indian School of Business, Hyderabad.

///////WO 2016092561, Ivacaftor, New patent, Laurus Labs Pvt Ltd

Share

EP 03031800, New patent, Miglustat, Navinta LLC

 PATENTS, Uncategorized  Comments Off on EP 03031800, New patent, Miglustat, Navinta LLC
Jun 272016
 

Miglustat.svg

MIGLUSTAT

 

Gauchers disease type I; Niemann Pick disease type C

EP-03031800, Process for the preparation of high purity miglustat

Navinta, LLC ; Shah, Shrenik K. ; Kharatkar, Raju Mahadev ; Bhatt, Chiragkumar Anilkumar ; Kevat, Jitendra Bhagwandas

The present invention provides a process for the preparation and isolation of crystalline miglustat without the use of a column chromatography or ion exchange purification. The crystalline miglustat has a high purity and a melting point of 128 °C and an endothermic peak is 133 °C.

Process for preparing and isolating crystalline form of miglustat with a high purity is claimed. Represents a first PCT filing from the inventors on miglustat. Actelion, under license from Oxford GlycoSciences (OGS; then Celltech, now UCB), which licensed the compound from GD Searle & Co, has developed and launched miglustat.

Product patent WO9426714, will expire in the US in 2018.

Kharatkar is affiliated with Sterling Biotech, Bhatt is affiliated with Intas and Kevat is affiliated with Orchid Chemicals & Pharmaceuticals.

INVENTORS   Shah, Shrenik K.; Kharatkar, Raju Mahadev; Bhatt, Chiragkumar Anilkumar; Kevat, Jitendra Bhagwandas

About Navinta

Navinta, LLC in Ewing, N.J. is a technology driven Pharmaceutical Company that focuses on novel routes of synthesis of new and existing drug molecules, complex pharmaceutical ingredients, novel formulations of liquid dosage form, novel oral dosage form, novel injectable dosage form and implantable drug delivery devices. Navinta has currently at least fifteen (15) patents granted or pending with the United States Patent and Trademark Office.

 

EP-03031800  LINK EMBEDDED

Miglustat is a potent inhibitor of glycosyltransferase. It is primarily used in the treatment of Gaucher’s disease. Miglustat is chemically known as N-butyl-1,5-dideoxy-1,5-imino-D-glucitol of formula (I) and is sometimes referred as N-butyl-1-deoxynojirimycin. Miglustat is a white to off-white crystalline solid with a melting point of 125-126° C. Its empirical formula is C10H21NO4 and has a molecular weight of 219.28 g/mol.

(MOL) (CDX)

      Miglustat belongs to the class of azasugars or iminosugars. Ever since the discovery of iminosugars in the 1960s, iminosugars have been subject of extensive studies in both the organic chemistry and biochemistry fields. Iminosugars are polyhydroxylated alkaloids, which may be described as monosaccharide analogues with nitrogen replacing oxygen in the ring. A well-known member of this extensive family of compounds is 1-deoxynojirimycin of formula (II).

(MOL) (CDX)

      1-Deoxynojirimycin was initially synthesized in a laboratory. Subsequently, 1-deoxynojirimycin was isolated from natural sources, such as from leaves of mulberry trees and certain species of bacteria. 1-Deoxynojirimycin was shown to be an enzyme inhibitor.
      Further research on 1-deoxynojirimycin analogs revealed that N-alkylated derivatives of 1-deoxynojirimycin exhibited greater biological activity than 1-deoxynojirimycin. Among them, N-butyl-1-deoxynojirimycin or miglustat of formula (I), was identified as a very potent inhibitor of glycosyltransferase. Miglustat was later approved by the FDA for human use.
      Preparation of azasugars has been a very active area of research for a long time. A seminal synthesis of the compounds of formulas (I) and (II) by double reductive aminations of 5-keto-D-glucose was developed by Baxter and Reitz (J. Org. Chem. 1994, 59, 3175). This method was later refined by Matos and Lopes (Synthesis 1999, 571), in which tetra-O-benzyl-glucose was used as a starting material. Synthesis of miglustat can be traced back to 1977, when chemists from Bayer reported a synthesis of miglustat from 1-deoxynojirimycin and patented in U.S. Pat. No. 4,639,436. Other variations of this general scheme have also appeared in patents and non-patent literature, for example, U.S. Pat. No. 8,802,155 and U.S. Application Publication No. 2014/0243369.
      A major drawback of those protocols is that all of them require the use of ion-exchange resins for purification of miglustat. In those protocols, an aqueous solution of miglustat obtained after running an ion-exchange column was concentrated to isolate miglustat. Due to the presence of four hydroxyl groups and a tertiary amine moiety in its chemical structure, miglustat is extremely hydrophilic. Thus, isolation of miglustat from an aqueous solution is quite challenging. In particular, it was very difficult to remove diastereomers and inorganic impurities formed during the reactions from miglustat by those protocols. Sometimes a second chromatographic purification was required to separate these impurities from miglustat. As a result, the yields of miglustat were generally low. The requirement to use a column purification (e.g. ion exchange column, flash column chromatography) further limits the scale of miglustat that could be prepared.

 

      Scheme 1 is a synthetic scheme of miglustat in accordance with one embodiment of the invention:

(MOL) (CDX)

      As depicted in scheme 1, the method of preparing miglustat may include the steps of: (1) providing or synthesizing a compound of formula (V); (2) conducting a reductive amination to provide a compound of formula (VI); (3) performing a hydrogenation reaction; and (4) isolating a free base miglustat.
      The starting material, 2,3,4,6-tetra-O-benzyl-1-deoxynojirimycin hydrochloride of formula (V) may be prepared by following the methods described in Organic Process Research and Development, 2008, 12, 414-423.

Example 1

Synthesis of 2, 3, 4, 6-tetra-O-benzyl-N-butyl-1-deoxynojirimycin hydrochloride of Formula (VI)

To a solution of 2, 3, 4, 6-tetra-O-benzyl-1-deoxynojirimycin hydrochloride (V) (prepared as in Organic Process Research & Development, 2008, 12, 414-423) (45 g, 0.08 mol) in 1575 mL of methanol, n-butyraldehyde (21.6 g, 0.24 mol) and sodium cyanoborohydride (25.2 g, 0.4 mol) were added and stirred. The reaction was maintained under stirring at a temperature from about 25.degree. C. to about 30.degree. C. After the completion of the reaction, the reaction was quenched by adding 765 ml of 10% HCl in methanol, while keeping the temperature between 25.degree. C. to 30.degree. C. The reaction mass was cooled to 0.degree. C. to 5.degree. C. and the resulting precipitate solids were filtered. The filtrate was treated with aqueous HCl and the solid formed was filtered, suspended in 1 N HCl, stirred for 1 hour and filtered. The collected solid was washed with diisopropylether and dried under vacuum to furnish 46.2 g of compound (IV) (46.2 g, 0.075 mol, 94% yield) of high chemical purity based on HPLC analysis (>99.0%).

Example 2

Synthesis of Miglustat Hydrochloride of Formula (III)

A solution of 2, 3, 4, 6-tetra-O-benzyl-N-butyl-1-deoxynojirimycin hydrochloride (VI) (100 g, 0.16 mol) in methanol (1000 mL), 10% HCl solution in methanol (100 mL), and 10% Pd/C (50% wet) (10 g) were mixed and stirred under hydrogen atmosphere at a temperature of about 25.degree. C. to about 30.degree. C. until completion of the reaction. The reaction mass was filtered and the solvent was removed from the filtrate by rotary evaporation. Ethyl acetate (1000 mL) was added to the residue from the rotary evaporation to precipitate the solid. The solid was filtered and dried to isolate Miglustat hydrochloride (III) (42 g, 0.16 mol, 100% yield) of >99.5% purity as measured by HPLC analysis. The DSC thermogram of this product is provided as FIG. 3, and the FTIR spectrum of this product is provided as FIG. 4.

Example 3

Synthesis of Miglustat of Formula (I)

Miglustat hydrochloride (III) (42 g, 0.16 mol) obtained from Example 2 was dissolved in 420 mL of methanol and DBU (1,8-diazabicycloundec-7-ene) (34.1 mL) was added. The reaction mass was warmed slightly and stirred for about 2 hours. The reaction was concentrated by removal of methanol. Dichloromethane (900 mL) was added to the residue. The resulting solid was filtered and dried to obtain crystalline miglustat (I) (27 g, 0.12 mol, 75% yield) of >99.5% purity as measured by HPLC analysis. The melting point of the crystalline miglustat (I) is 128.degree. C. The DSC thermogram and FTIR spectrum of the product are provided as FIG. 1 and FIG. 2, respectively. The crystalline miglustat (I) contained <0.05% of the 5R isomer (IV) as measured by HPLC.

 

 

////////////EP 03031800, new patent, miglustat, Kharatkar, Sterling Biotech, Bhatt, Intas ,  Kevat,  Orchid Chemicals & Pharmaceuticals.

Share

Billion-Dollar Products Coming Off Patent in 2016

 PATENTS  Comments Off on Billion-Dollar Products Coming Off Patent in 2016
Jun 262016
 

2016 Patent Expirations.

READ AT

http://lab.express-scripts.com/lab/insights/drug-options/2016-drug-pipeline-full-of-blockbuster-potential

CUBICIN OFF PATENT IN 2016 IN US

JAPAN 2016

Blopress

BARACLUDE IN JAPAN IN 2016

ENTECAVIR, BARACLUDE

Vfend (Voriconazole) IN UK





According to a report by DCAT, based on IMS analysis, the following are some of the key patent expiries between 2014 and 2018.

  1. Nexium (esomeprazole): This patent expired in May 2014. Innovator AstraZeneca granted a license to Teva (TEVA) to produce the generic form in the United States.
  2. Celebrex (celecoxib): This patent expired in 2014. Pfizer conceded the drug to generic drug makers Actavis (ACT) and Teva after a prolonged lawsuit.
  3. Symbicort (budesonide/formoterol fumarate dihydrate): Some of AstraZeneca’s 13 patents have expired, but all won’t expire until 2023. No generic version of the drug exists.
  4. Crestor (rosuvastatin): AstraZeneca will lose its patent protection for Crestor in 2016.
  5. Cialis (tadalafi): Eli Lilly (LLY) is set to lose patent protection in the United States and Europe in 2017.

THE VIEWS EXPRESSED ARE MY PERSONAL AND IN NO-WAY SUGGEST THE VIEWS OF THE PROFESSIONAL BODY OR THE COMPANY THAT I REPRESENT, amcrasto@gmail.com, +91 9323115463 India

Ranking (by highest sales forecasts for 2020)

Drug

Disease

Pharmaceutical Company

2020 Forecast Sales (US $ billions)

1

Obeticholic acid

Chronic liver diseases, primarily primary biliary cirrhosis

Intercept Pharmaceuticals and Sumitomo Dainippon Pharma

2.621

2

Emtricitabine + tenofovir alafenamide (F/TAF)

HIV-1 infection

Gilead Sciences and Japan Tobacco

2.006

3

Tenofovir alafenamide + emtricitabine + rilpivirine (R/F/TAF)

HIV-1 infection

Gilead Sciences and Janssen R&D

1.572

4

MK-5172A (grazoprevir + elbasvir)

HCV infection

Merck & Co

1.537

5

Venetoclax

Chronic lymphocytic leukemia

Abbvie

1.477

6

Nuplazid (pimavanserin)

Parkinson’s disease psychosis

ACADIA Pharmaceuticals

1.409

7

Uptravi (selexipag)

Pulmonary arterial hypertension

Nippon Shinyaku Co and Actelion

1.268

2016 DRUGS-TO-WATCH FORECAST SALES RANKINGS

Analysis based on data accessed on January 08, 2016.

(SOURCE: Thomson Reuters Cortellis)

 SOME SELECTED STRUCTURES

Obeticholic acid

Obeticholic acid.svg

2Grazoprevir

Grazoprevir.svg

 3 Venetoclax

Venetoclax.svg

 4

Pimavanserin

New Blockbuster Drugs to Watch in 2016

Each of these new drugs could rake in $2 billion in sales.

Blockbuster drugs, those medicines that bring in more than $1 billion in sales every year, are the holy grail of drug development. They can make a pharmaceutical company and send them to rock-star status among investors, as evidenced by the rise of Gilead Sciences after the launch of its hepatitis C treatments. This year’s slate of new drug launches features at least seven drugs expected to hit blockbuster status within the next five years, according to a study by Thomson Reuters.

The line-up also reveals key trends within the pharmaceutical industry for this year and beyond, including an increasing focus on rare diseases, the development of more convenient single-dose regimens, and more affordable treatments.

Here are the seven drugs set to launch this year and reach blockbuster status by 2020.

1. Intercept Pharmaceuticals and Sumitomo Dainippon Pharma

Drug: Obeticholic acid

Indication: Chronic liver diseases, primarily primary biliary cirrhosis

2020 Forecast Sales: $2.62 billion

Intercept Pharmaceuticals’ ICPT -7.35% obeticholic acid has proved very effective in treating non-alcoholic steatohepatitis, a type of liver inflammation caused by fat build-up in the organ. This condition has no approved treatment and a potentially large market, which is expected to push the drug to blockbuster status, if approved. About 2% to 3% of the global population has non-alcholoic steatohepatitis and the share will likely increase due to rising rates of pre-disposing factors like obesity and insulin resistance.

2. Gilead Sciences and Japan Tobacco

Drug: Emtricitabine and tenofovir alafenamide (F/TAF)

Indication: HIV-1 infection

2020 Forecast Sales: $2 billion

Gilead’s GILD -3.48% two HIV-1 infection drugs in development are both expected to be big money-makers, and the company is hoping the new daily single-dosage options will be able to replace sales of its existing HIV treatments that are set to lose patent protections in 2017. The new TAF-based therapies show evidence that they are potentially a safer replacement for some current therapies, including Gilead’s own Truvada.

3. Gilead Sciences and Janssen R&D

Drug: Tenofovir alafenamide and emtricitabine and rilpivirine (R/F/TAF)

Indication: HIV-1 infection

2020 Forecast Sales: $1.57 billion

Like the No. 2 drug on this list, Gilead’s secondary TAF-based combination therapy in partnership with Johnson & Johnson’s JNJ -1.49% Janssen unit is expected to improve renal and bone mineral density measurements compared with some existing drugs. Those results combined with the improved longevity of HIV patients and increasing numbers of those eligible for antiretroviral drugs means a large and lucrative market for the two new TAF-based drugs.

Tenofovir alafenamide structure.svg

Tenofovir alafenamide

4. Merck & Co.

Drug: MK-5172A

Indication: Hepatitis C virus

2020 Forecast Sales: $1.54 billion

Merck MRK -3.12% is getting ready to enter the heated market for hepatitis C treatments, going up against Gilead’s Harvoni and Abbvie’s Viekira Pak. Following a significant setback when theFood and Drug Administration withdrew its “breakthrough drug” status, Merck’s treatment could finally launch this year to give another safe and high-quality treatment for the disease. A recent warning by the FDA concerning Viekira Pak has dampened sales of Abbvie’s drug, which could give Merck a leg up when it eventually brings its hepatitis C drug to market. It could also pursue an aggressive pricing strategy to gain market share, given the currently high price tags on current treatments.

5. Abbvie

Drug: Venetoclax

Indication: Chronic lymphocytic leukemia

2020 Forecast Sales: $1.48 billion

Abbvie’s ABBV -2.37% Venetoclax is a potential oral treatment for cancer, primarily focused on a type of chronic lymphocytic leukemia that is resistant to chemotherapy. The drug was a leading therapy at last year’s annual meeting of the American Society of Hematology after a clinical trial showed an overall response rate of 79.4% in patients with relapsed chronic lymphocytic leukemia. The drug is also being tested as a potential treatment for other hematological cancers like non-Hodgkin’s lymphoma, as well as in combination with tamoxifen in patients with metastatic breast cancer.

6. ACADIA Pharmaceuticals

Drug: Nuplazid

Indication: Parkinson’s disease psychosis

2020 Forecast Sales: $1.41 billion

ACADIA’s ACAD -6.18% nuplazid could be the first and only drug on the market to help treat Parkinson’s disease psychosis, which affects up to 40% of Parkinson’s patients. Clinical trials have shown that the drug does not worsen motor symptoms, a vital factor for these patients, while improving night-time sleep, daytime wakefulness, and caregiver burden. Nuplazid may also work in other psychosis settings, such as schizophrenia and Alzheimer’s disease psychosis. The combination of those three diseases means ACADIA’s drug has a potentially massive and therefore lucrative market.

7. Nippon Shinyaku and Actelion

Drug: Uptravi

Selexipag

Indication: Pulmonary arterial hypertension

2020 Forecast Sales: $1.27 billion

Nippon Shinyaky’s Uptravi is able to both delay the progression of pulmonary arterial hypertension, a type of high blood pressure that affects arteries in the lungs and heart, as well as reduce the risk of hospitalization. The drug is the only one on this list that’s already available. It entered the market in the first week of January 2016 and is expected to bring in $189 million in its first year, with sales increasing to $1.27 billion by 2020. Uptravi is being promoted as an additional therapy once baseline treatment has been started. A massive clinical trial showed that Uptravi reduced the risk of death from pulmonary arterial hypertension by 39% versus placebo.

2015

  1. Opdivo, Bristol-Myers Squibb, $5.684 billion
  2. Praluent, Regeneron Pharmaceuticals and Sanofi, $4.414 billion
  3. LCZ-696, Novartis, $3.731 billion
  4. Ibrance, Pfizer, $2.756 billion
  5. Iumacaftor plus ivacaftor, Vertex Pharmaceuticals, $2.737 billion
  6. Viekira Pak, AbbieVie, $2.500 billion
  7. Evolocumab, Amgen and Astellas Pharma, $1.862 billion
  8. Gardasil 9, Merck & Co., $1.637 billion
  9. Brexpiprazole, Ostuka Pharmaceutical and Lundbeck, $1.353 billion
  10. Toujeo, Sanofi, $1.265 billion
  11. Cosentyx, Novartis, $1.082 billion

SOME MORE STRUCTURES

Rilpivirine.svgRilpivirine

Elbasvir.svgElbasvir

Opdivo

Quetiapine

The pharmaceuticals losing patent protection in 2016

 

A review of the drugs to watch in 2016 identifies several key areas of continued focus in the pharmaceutical industry: rare diseases, FDC regimens and pricing. The year ahead is anticipated to be a very interesting, and challenging, one for the pharmaceutical industry.

THE VIEWS EXPRESSED ARE MY PERSONAL AND IN NO-WAY SUGGEST THE VIEWS OF THE PROFESSIONAL BODY OR THE COMPANY THAT I REPRESENT, amcrasto@gmail.com, +91 9323115463 India

Share

Safe and Fast Flow Synthesis of Functionalized Oxazoles with Molecular Oxygen in a Microstructured Reactor

 flow synthesis, SYNTHESIS  Comments Off on Safe and Fast Flow Synthesis of Functionalized Oxazoles with Molecular Oxygen in a Microstructured Reactor
Jun 242016
 
Abstract Image

The synthesis of hydroperoxymethyl oxazoles by oxidation of alkylideneoxazoles with molecular oxygen was implemented in a microstructured reactor for increased safety and larger-scale applications. Elaborate studies on the influence of pressure and temperature were performed, and the apparent activation energy for the oxidation reaction was determined. Elevated temperatures up to 100 °C and pressures up to 18 bar(a) led to a conversion rate of approximately 90% within 4 h of the reaction time, thus displaying the high potential and beneficial effect of using a microreactor setup with liquid recycle loop for this oxidation. The in situ reduction of the generated hydroperoxide functionality shows the capability of this setup for follow-up transformations.

Oxazole–hydroperoxide 3as a colorless solid. Rf (PE/EA 3:1 = 0.31).

1H NMR (30 MHz, CDCl3) δ = 4.98 (s, 2H), 7.12 (s, 1H), 7.49–7.29 (m, 3H), 7.88–7.75 (m, 2H), 10.16 (s, 1H). GC-MS (EI) m/z = 173.1 (M – OH), 144.1 (M – CH2OOH), 116.1 (M – C6H5 + 2H), 89.1.

 

STR1

Safe and Fast Flow Synthesis of Functionalized Oxazoles with Molecular Oxygen in a Microstructured Reactor

Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg,Germany
Institute of Chemical Process Engineering, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
§ Chemistry Department, Faculty of Science, King Abdulaziz University (KAU), 21589 Jeddah, Saudi Arabia
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.6b00118
*E-mail: t.roeder@hs-mannheim.de. Telephone: +49 621 292 6800.
Siegel
Organisch-Chemisches Institut                                    
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Institute of Chemical Process Engineering, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany

Panorama picture of the Campus in July 2006

 

Thorsten Röder

Prof. Dr.
Professor (Full)

Research experience

  • Sep 2009–present
    Professor (Full)
    Hochschule Mannheim · Institute of Chemical Process Engineering
    Germany · Mannheim
  • Sep 2005–Aug 2009
    Laboratory Head
    Novartis · Chemical and Analytical Process Development
    Switzerland · Basel
  • Sep 1999–Aug 2004
    PhD Student
    Universität Paderborn · Department of Chemistry · Physical Chemistry Prof. Kitzerow
    Germany · Paderborn
 Teaching experience
  • Sep 2009–present
    Professor (Full)
    Hochschule Mannheim · Institute of Chemical Process Engineering
    Germany
    Lectures in: Chemical Reaction Engineering Thermodynamic Microreactors & Nanotechnology CFD Practical Course: Chemical Reaction Engineering

Education

  • Oct 1999–Oct 2004
    Universität Paderborn
    Physical Chemistry · Dr. rer. nat.
    Germany · Paderborn
  • Sep 1994–Sep 1999
    Universität Paderborn
    Chemistry · Diplom Chemiker
    Germany
Hashmi Stephen 160x200

Prof. Dr. A. Stephen K. Hashmi

E-Mail hashmi@hashmi.de

/////////Safe and Fast,  Flow Synthesis, Functionalized Oxazoles, Molecular Oxygen, Microstructured Reactor

Share

Tenatoprazole, テナトプラゾール

 phase 1, Uncategorized  Comments Off on Tenatoprazole, テナトプラゾール
Jun 232016
 

STR1

Tenatoprazole.svg

Tenatoprazole

泰妥拉唑

Tenatoprazole; 113712-98-4; Ulsacare; Protop; TU 199; TU-199;
Molecular Formula: C16H18N4O3S
Molecular Weight: 346.40412 g/mol

5-methoxy-2-[(4-methoxy-3,5-dimethylpyridin-2-yl)methylsulfinyl]-1H-imidazo[4,5-b]pyridine

2-[2-(3,5-Dimethyl)pyridylmethylsulfinyl]-5-methoxyimidazo[4,5-b]pyridine

Phase I

PHASE 1 FOR ………..A proton pump inhibitor potentially for the treatment of gastroesophageal reflux disease.

Research Code TU-199

CAS No. 113712-98-4

Mitsubishi Tanabe Pharma and was licensed to Negma Laboratories

Tenatoprazole is a proton pump inhibitor drug candidate that was undergoing clinical testing as a potential treatment for refluxoesophagitis and peptic ulcer as far back as 2003.[1] The compound was invented by Mitsubishi Tanabe Pharma and was licensed to Negma Laboratories (part of Wockhardt as of 2007[2]).[3]:22

Mitsubishi reported that tenatoprazole was still in Phase I clinical trials in 2007[4]:27 and again in 2012.[3]:17

Tenatoprazole has an imidazopyridine ring in place of the benzimidazole moiety found in other proton pump inhibitors, and has a half-life about seven times longer than other PPIs.[5]

Tenatoprazole is a novel imidazopyridine derivative and has an imidazopyridine ring in place of the benzimidazole moiety found in other proton pump inhibitors. It is activated more slowly than other proton pump inhibitor, but its inhibition is resistant to reversal.Tenatoprazole has an extended plasma half-life in comparison with those of all other proton pump inhibitors; this makes it more potent in the treatment of nocturnal acid breakthrough than esomeprazole, one of the most popular proton pump inhibitors.
Tenatoprazole belongs to the class of covalent proton pump inhibitors (PPIs), which is converted to the active sulfenamide or sulfenic acid by acid in the secretory canaliculus of the stimulated parietal cell of the stomach.This active species binds to luminally accessible cysteines of the gastric H+,K+-ATPase, resulting in disulfide formation and acid secretion inhibition.Tenatoprazole binds at the catalytic subunit of the gastric acid pump with a stoichiometry of 2.6 nmol mg−1 of the enzyme in vitro. In vivo, maximum binding of tenatoprazole was 2.9 nmol mg−1of the enzyme at 2 h after intravenous (IV) administration.

Tenatoprazole, or (+)-5-methoxy-2-{[(4-methoxy-3,5-dimethyl-2-pyridyl) methyl] sulfinyl} imidazo-[4,5-b] pyridine, is described in Patent No. EP 254,588. It belongs to the group of drugs considered as proton pump inhibitors, which inhibit the secretion of gastric acid and are useful in the treatment of gastric and duodenal ulcers. It can also be used to treat gastro-oesophageal reflux, digestive bleeding and dyspepsia, because of its relatively long elimination half-life, as described in the application for French patent No. FR 02. 13113.

The first known derivative of this series of proton pump inhibitors was omeprazole, described in Patent No. EP 001,529, which is endowed with properties which inhibit the secretion of gastric acid and is widely employed as an anti-ulcerative in human therapeutics.

In addition to omeprazole, other proton pump inhibitors are well known, and particular mention can be made of rabeprazole, pantoprazole and lansoprazole, which all exhibit structural analogy and lansoprazole, which all exhibit structural analogy and belong to the group of pyridinyl methyl sulfinyl benzimidazoles. These compounds are sulfoxides presenting with asymmetry at the level of the sulphur atom, and therefore generally take the form of a racemic mixture of two enantiomers.

Like omeprazole and other sulfoxide with an analogue structure, tenatoprazole has an asymmetric structure and may therefore be present in the form of a racemic mixture or of its enantiomers. Thus it may exist in the form of its two enantiomers with R and S configurations, or (+) or (−), respectively.

Recent studies have shown that, unlike all the other proton pump inhibitors such as, for example, omeprazole or lansoprazole, and unexpectedly, tenatoprazole is endowed with a markedly prolonged duration of action, resulting from a plasma half-life which is about seven times longer. Thus the clinical data collected have shown that tenatoprazole enables a degree of symptom relief and healing of gastric lesions which is superior to that achieved by other drugs belonging to the same therapeutic category of proton pump inhibitors, which thus allows its effective use in the treatment of atypical and oesophageal symptoms of gastro-oesophageal reflux, digestive bleeding and dyspepsia, as indicated above.

Studies performed by the application have made it possible to show that the two enantiomers contribute differently to the properties of tenatoprazole, and that the two enantiomers, (+) and (−) exhibit significantly different pharmacokinetic properties. Thus it is possible to prepare medicinal products with specific activity by isolating the enantiomers, and these enantiomers themselves exhibit a different pharmacokinetic profile from that of the known racemic mixture. It then becomes possible to use each of these enantiomers more effectively in precise indications for the treatment of perfectly identified pathologies.

Tenatoprazole.png

Anti-ulcer drug
tenatoprazole (tenatoprazole) is a new proton pump inhibitor, by the Japanese company Tokyo Tanabe, Japan’s Mitsubishi Corporation and Japan’s Hokuriku pharmaceutical companies jointly developed, has passed Phase II clinical trials. It acts on gastric parietal cells, reducing treatment of gastric ulcer, duodenal ulcer, reflux wall cell H + / K + -ATP activity, inhibition of gastric acid secretion, and H. pylori antibacterial activity, mainly for esophagitis and Zhuo – Ellison syndrome and gastric acid secretion disorders related diseases. Compared with the same types of drugs, Tenatoprazole suppress H + / K + -ATP enzyme activity is stronger, more stable, its efficacy than similar products currently widely used in clinical omeprazole strong 7 times. It has not been in the domestic market, nor ratified the production, with broad market prospects and development potential.
Proton pump inhibitors (proton pump inhibitors) for the treatment of acid-related diseases, the past ten years a wide range of clinical applications, better effect of the drug. It can quickly pass through the stomach wall membrane, gathered in a strongly acidic secretory tubules, and H + / K + -ATP enzyme (proton pump) thiol groups covalently bonded to form a disulfide bond, proton pump inactivation, inhibition of the enzyme H + / K + transport, so as to achieve the effect of acid suppression. Proton pump inhibitors and conventional clinical application of gastric acid suppression drugs H2 receptor antagonists compared with different sites of action and have different characteristics, namely acid-suppressing effect at night is good, rapid onset of acid inhibition strong and long time, easy to take these drugs can quickly and efficiently inhibit gastric acid secretion and clearance of Helicobacter pylori, it is widely used gastric ulcer, duodenal ulcer, reflux esophagitis and Zhuo – Ellison syndrome and other diseases treatment. Currently, proton pump inhibitors has been listed on the main omeprazole, lansoprazole, pantoprazole, rabeprazole and esomeprazole.
Physical and

chemical properties ofwhite or white crystalline powder, melting point 174 ~ 175 ℃. Soluble in chloroform, insoluble in alcohol and water.
This product and other proton pump inhibitors as compared to chemically stable. China had 34 omeprazole preparations from Portugal, Brazil, India, China and other 13 countries, the stability of the measurements were made. The results showed that only six products (18%) during the trial showing good physical and chemical stability of. 27 products (79%) less (including Chinese product), the active ingredient a significant chemical decomposition, color and physical properties such as dissolution, are also a corresponding change. The results of a stability test designed to compare the various proton pump inhibitors show investigated eight days at 60 ℃, relative humidity of 75%, after omeprazole decomposition only 3% of the active ingredient, the tenatoprazole 77% of the data, said Alpha pantoprazole stability far superior to omeprazole, is already developed similar products in the most promising products.

Synthesis 

 

Matsuishi, N.; Takeda, H.; Iizumi, K.; Murakami, K.; Hisamitsu, A. US Patent 4,808,596, 1989

Synthesis of Tenatoprazole 1 commences with the coupling of 2-mercapto-5-methoxyimidazo[4,5-b]pyridine 2 with 2-chloromethyl-4-methoxy-3,5-dimethyl pyridine hydrochloride 3 in the presence of potassium hydroxide affords 4 with 73% yield in ethanol and chloroform.  The oxidation of the penultimate sulfide intermediate4 with m-CPBA in chloroform (100 vol) afforded 1

STR1

 

Syn 2

Org. Process Res. Dev., 2009, 13 (4), pp 804–806
DOI: 10.1021/op800173u

synthesis of begins with the solvent-free condensation of 2-mercapto-5-methoxyimidazo[4,5-b]pyridine 2 with 2-chloromethyl-4-methoxy-3,5-dimethyl pyridine hydrochloride 3 to deliver the sulfide intermediate4 with 98% yield.

The final step of the synthesis is the oxidation of the sulfide intermediate with m-CPBA to form tenatoprazole 1. The sulfide intermediate 4 on treatment with 0.9 equiv of m-chloroperbenzoic acid (m-CPBA) at −10 to −15 °C afforded the crude tenatoprazole which was isolated as its sodium salt. The sodium salt of tenatoprazole 5 was purified by recrystallsation using dimethyl formamide and ethyl acetate (2:1 ratio) to yield the pure crystalline tenatoprazole sodium 5. Treatment of tenatoprazole sodium 5 with dil. HCl in the presence of acetone and water afforded the pure tenatoprazole 1

STR1

 

 

PATENT

CN 1861600

CN 1982311

WO 2009116072

CN 101429192

WO 2010043601

IN 2010CH00462

IN 251400

CN 102304127

WO 2012004802

CN 102703922

IN 2009DE01392

WO 2014111957

IN 2013MU00181

IN 2014CH01419

PAPER

Dai, Liyan; Synthetic Communications 2008, V38(4), P576-582

Advanced Materials Research (Durnten-Zurich, Switzerland) (2011), 233-235(Pt. 1, Fundamental of Chemical Engineering), 160-164.

Organic Process Research & Development (2013), 17(10), 1293-1299

Enantiomeric separation of proton pump inhibitors on new generation chiral columns using LC and supercritical fluid chromatography
Journal of Separation Science (2013), 36, (18), 3004-3010………http://onlinelibrary.wiley.com/doi/10.1002/jssc.201300419/abstract

PATENT

CN 102304127

https://www.google.com/patents/CN102304127A?cl=en

Tenatoprazole is a new type of gastric H + / K + -ATP enzyme inhibitors (proton pump inhibitor PPI), the chemical name 5-methoxy-2- (4-methoxy-3, 5-dimethyl-2-methylsulfinyl) imidazole and W, 5-b] pyridine, useful in the treatment of gastric ulcer, duodenal ulcer, reflux esophagitis and Zhuo – Ai syndrome and gastric acid secretion disorders related diseases. The drug was developed by Japan’s Tokyo Tanabe, Japan’s Mitsubishi Corporation and Japan’s Hokuriku pharmaceutical companies. Compared with other varieties of the same type, which inhibit H + / K + -ATP enzyme activity is stronger, ulcers of various tests are effective, and significantly improve the stability compared with other proton pump inhibitors.

 US patent US4808596 “hidazo [4,5_b] pyridine compounds and pharmaceutical compositions containing same)) synthesis process disclosed Tenatoprazole the below formula:

 

Figure CN102304127AD00031

By  The route of 2-chloro-3,5-dimethyl-4-methoxypyridine hydrochloride with 2-mercapto-5-methoxy-imidazole, 5-b] pyridine under basic conditions condensation of Intermediate 2- [2- (3,5_-dimethyl) -4-methoxy-5-methoxy-pyridylmethyl sulfide] imidazo W, 5-b] pyridine, and then oxidizing the Thai duly omeprazole. This route for the synthesis of pull azole classic line, many pull azoles such as omeprazole can be synthesized by a similar route, this route mild condition, simple operation. But the route condensation, oxidation treatment after use of large amounts of toxic solvent chloroform, is not conducive to industrial scale; lower oxidation yields, the resulting Tenatoprazole containing unreacted starting materials 2- [2_ (3,5 – dimethyl) -4-methoxy-5-methoxy-pyridylmethyl sulfide] imidazo W, 5-b] pyridine, further comprising a sulfone by-product, N- oxide, N- oxide sulfone, These by-products may interfere with purification of tenatoprazole.

Japanese Patent invention Wo 丨 J JP05222038 “5_methoxy-2- [[(4_methoxy-3, 5-dimethyl-2-pyridyl) methyl] thio] imidazo [4,5 ~ b] pyridine and intermediates)) male

Synthesis open Tenatoprazole the below formula:

 

Figure CN102304127AD00041

 4-chloro-2-chloromethyl-3,5-dimethylpyridine -N- oxide 2_ mercapto _5_ methoxy-imidazo – [4, 5-b] pyridine in alkaline under condensation of Intermediate 5-Methoxy-2- (4-chloro-3,5-dimethyl-2-methylthio Bi) imidazo W, 5-b] pyridine-oxide -N- ( yield 82%), then refluxed in a solution of sodium methoxide in methanol to give 5-methoxy-2- (4-oxo-3,5-dimethyl-2-methyl sulfide) imidazo W , 5-b] pyridine -N- oxide (income ¥ 71%), and then at room temperature in methylene chloride, phosphorus trichloride treated with deoxy (yield 95%), and finally oxidation in Tenatoprazole (income Rate not reported). The novel synthetic route, mild reaction conditions, simple operation, the yield of each step is higher, but the route is too long resulting in a total yield is not high, prolonged and rising production costs.

Reaction route is as follows:

 

Figure CN102304127AD00051

Example 1:

] a) 2- [2- (3,5-dimethyl) -4-methoxy-picolyl thioether _5_ methoxy] imidazo [4,5_b] pyridine:

 To a reaction flask was added 2-mercapto-5-methoxy-imidazole, 5-b] pyridine 18. lg, 12g of sodium hydroxide and water 144. 8g, stirred and dissolved at 25 ° C, was added dropwise within Ih 20g of the 2-chloromethyl-dimethyl-4-methoxy _3,5- pyridine hydrochloride and 60g of water were mixed solution dropwise at 25 ° C the reaction 2h, the reaction is completed, filtered, washed with water 144. 8g, 36. 2mL ethanol and washed to obtain a wet powder; wet powder was dried at 50 ° C in vacuo to constant weight to give 2- [2_ (3,5-dimethyl) -4-methoxy-pyridylmethyl sulfide -5 – methoxy] imidazo [4,5-b] pyridine 32. Og;

 2) Preparation of tenatoprazole lithium salt: To a reaction flask was added 2- [2- (3,5_-dimethyl) -4-methoxy-5-methoxy-pyridylmethyl sulfide] imidazo W, 5-b] pyridine 30g, dichloromethane 300g, methanol 15g, and dissolved with stirring; cooled to -10 ° C, was added dropwise the 15g and 485g m-chloroperbenzoic acid in methylene chloride mixed solution, dropwise addition the reaction temperature was controlled at -10 ° C, the dropping time of the pool; the dropwise addition, the temperature control at -10 ° C, the reaction 30min; completion of the reaction, at 10 ° C by the dropwise addition of lithium hydroxide and 135g water 15g mixed solution, drip complete, insulation stirred Ih; filtered cake was washed with acetone 60mL, get wet powder; wet powder was dried at 35 ° C under vacuum to constant weight to give Tenatoprazole lithium salt ^ g;

 3) Preparation Tenatoprazole: To a reaction flask 加入泰 pantoprazole lithium salt 25g, acetone 63mL, water IOOmL, cooling M0 ° C, dropping lmol within lh / L hydrochloric pH7 0, drops. Albert, stirring 30min; the filter cake washed with water 50mL, washed with acetone and 50mL, wet powder was dried at 35 ° C under vacuum to constant weight to give Tenatoprazole 19. Sg.

 Example 2:

 a) 2- [2- (3,5-dimethyl) -4-methoxy-5-methoxy-pyridylmethyl sulfide] imidazo W, 5_b] pyridine (4) Preparation: To the reaction flask was added 2-mercapto-5-methoxy-imidazo 44,5-b] pyridine 18. lg, 11. 2g of potassium hydroxide and water 217mL, stirred and dissolved at! 35 ° C, was added dropwise within 2h by the 33. 3g of 2-chloro-3,5-dimethyl-4-methoxypyridine hydrochloride and 133. 2mL water mixed solution, dropwise at 35 ° C the reaction 4h, the reaction is completed, filtration, water 217mL, 72. 4mL ethanol and washed to obtain a wet powder; wet powder was dried at 60 ° C in vacuo to constant weight to give 2- [2- (3,5-dimethyl) -4-methoxy-pyridylmethyl sulfide -5-methoxy-yl] imidazo W, 5-b] pyridine 33. Ig;

 2) Preparation of tenatoprazole lithium salt: To a reaction flask was added 2- [2- (3,5_-dimethyl) -4-methoxy-5-methoxy-pyridylmethyl sulfide] imidazole and W, 5-b] pyridine 30g, dichloromethane 400mL, methanol 50mL, stirring to dissolve; cooled to _15 ° C, was added drop by the m-chloroperoxybenzoic acid 16g of mixed solution of dichloromethane and 400mL , the process reactor temperature control was added dropwise at -20 ° C, the dropping time 2. 5h; the dropwise addition, the temperature control _15 ° C, the reaction 35min; completion of the reaction, at 15 ° C by the dropwise addition of 20g of hydrogen Lithium oxide and 200mL water mixed solution, drip completed, insulation mixing 1. 5h; filtration, the filter cake washed with acetone 90mL, get wet powder; wet powder was dried at 40 ° C under vacuum to constant weight to give Tenatoprazole lithium salt 28. 6g;

 3) Preparation Tenatoprazole: To a reaction flask 加入泰 pantoprazole lithium salt 25g, ethanol 75mL, water 150mL, cooled to 10 ° C, dropping 6mol / L hydrochloric pH8 0 within 2h,. drops Albert, stirring 40min; the filter cake washed with water 100mL, washed with acetone IOOmL, wet powder was dried at 40 ° C under vacuum to constant weight, yield powder was Tenatoprazole 19. 5g.

Example 3:

 a) 2- [2- (3,5-dimethyl) -4-methoxy-5-methoxy-pyridylmethyl sulfide] imidazo W, 5_b] pyridine (4) Preparation: To the reaction flask was added 2-mercapto-5-methoxy-imidazo 44,5-b] pyridine 18. lg, 8.4g of lithium hydroxide and water 180ml, stirred and dissolved at 30 ° C, was added dropwise within 1. 5h by the Guang .6g 2-chloro-3,5-dimethyl-4-methoxy-pyridine hydrochloride and 90mL water mixed solution, drop end at 30 ° C reaction 3h, the reaction is complete, filtration, water 217mL , washed with 85mL ethanol to obtain a wet powder; wet powder was dried at 55 ° C in vacuo to constant weight to give 2- [2- (3,5-dimethyl) -4-methoxy-5-pyridylmethyl sulfide oxy] imidazo [4,5-b] pyridine 32. 4g;

2) Preparation of tenatoprazole lithium salt: To a reaction flask was added 2- [2- (3,5_-dimethyl) -4-methoxy-5-methoxy-pyridylmethyl sulfide] imidazole and W, 5-b] pyridine 30g, dichloromethane 600mL, methanol 60mL, stirring to dissolve; cooled to -20 ° C, was added drop by the m-chloroperoxybenzoic acid 18g of mixed solution of dichloromethane and 600mL , dropwise addition the reaction temperature is controlled at _20 ° C, the dropping time of the pool; the dropwise addition, the temperature control at _20 ° C, the reaction 40min; completion of the reaction, at 20 ° C by the dropwise addition of lithium hydroxide and 300mL 30g water mixed solution, drip complete insulation mixing tank; filter, the filter cake washed with acetone and 120mL, get wet powder; wet powder was dried at 40 ° C under vacuum to constant weight to give Tenatoprazole lithium salt 28. 7g;

 3) Preparation Tenatoprazole: To a reaction flask 加入泰 pantoprazole lithium salt 25g, methanol 75mL, water 120mL, cooled to 5 ° C, dropping dilute hydrochloric acid within 1 5h tune pH7 5,.. drops Albert, stirring 35min; the filter cake washed with water 75mL, 75mL acetone washed, wet powder was dried at 40 ° C under vacuum to constant weight, yield powder was Tenatoprazole 19. 6g.

Example 4:

 a) 2- [2- (3,5-dimethyl) -4-methoxy-picolyl thioether _5_ methoxy] imidazo [4,5_b] pyridine ⑷ Preparation of: To a solution The reaction flask was added 2-mercapto-5-methoxy imidazole -½, 5-b] pyridine 18. lg, IOg sodium hydroxide and water 150ml, stirred and dissolved at 30 ° C, the 1. 5h dropwise added from 21 . 5g of 2-chloro-3,5-dimethyl-4-methoxypyridine hydrochloride and 90mL water mixed solution, dropwise at 30 ° C the reaction 3h, completion of the reaction, was filtered, washed with water 217mL, The wet powder was washed with ethanol to give 85mL; wet powder was dried at 55 ° C in vacuo to constant weight to give 2- [2- (3,5_-dimethyl) -4-methoxy-5-methoxy-pyridylmethyl sulfide ] imidazo [4,5-b] pyridine 32. 3g;

 2) Preparation of tenatoprazole lithium salt: To a reaction flask was added 2- [2- (3,5_-dimethyl) -4-methoxy-5-methoxy-pyridylmethyl sulfide] imidazole and W, 5-b] pyridine 30g, dichloromethane 500mL, methanol 60mL, stirring to dissolve; cooled to -20 ° C, was added drop by the m-chloroperoxybenzoic acid 18g of mixed solution of dichloromethane and 500mL , the process reactor temperature control was added dropwise at -20 ° C, the dropping time pool; the dropwise addition, the temperature control in -20 ° C, the reaction 40min; completion of the reaction, at 20 ° C by the dropwise addition of lithium hydroxide 30g and 300mL water mixed solution, drip complete insulation mixing tank; filter, the filter cake washed with acetone and 120mL, get wet powder; wet powder was dried at 40 ° C under vacuum to constant weight to give Tenatoprazole lithium salt 28. 6g;

 3) Preparation Tenatoprazole: To a reaction flask 加入泰 pantoprazole lithium salt 25g, isopropanol 75mL, water 120mL, cooled to 5 ° C, dropping 3mol / L hydrochloric within 1 5h. . pH7 5, drops Albert, stirring 35min; the filter cake washed with water 75mL, 75mL acetone washed, wet powder was dried at 40 ° C under vacuum to constant weight, yield powder was Tenatoprazole 19. 7g.

PAPER

An Improved Synthesis of Antiulcerative Drug: Tenatoprazole

http://pubs.acs.org/doi/full/10.1021/op800173u

Department of Research and Development, Srini Pharmaceuticals Ltd., Plot No. 10, Type-C, Road No. 8, Film Nagar, Jubilee Hills, Hyderabad-500033, Andhra Pradesh, India, Department of Chemistry, Osmania University, Tarnaka, Hyderabad-500007, Andhra Pradesh, India and Research and Development, Integrated Product Development Organization, Innovation Plaza, Dr. Reddy’s Laboratories Ltd., Bachupally, Qutubullapur, R. R. Dist. 500 072, Andhra Pradesh, India
Org. Process Res. Dev., 2009, 13 (4), pp 804–806
DOI: 10.1021/op800173u
Publication Date (Web): November 12, 2008
Copyright © 2008 American Chemical Society
* To whom correspondence should be addressed. Telephone: +91 9490783736. E-mail: drkvr_ou@yahoo.com;kvgr1951@rediffmail.com., †Srini Pharmaceuticals Ltd.
, ‡Osmania University.
, §Dr. Reddy’s Laboratory Ltd.
Abstract Image

An efficient, cost-effective and multikilogram-scale process for the synthesis of tenatoprazole 1, an antiulcerative drug, is described. The key steps in this synthesis involve the coupling of 2-mercapto-5-methoxyimidazo[4,5-b]pyridine 2 with 2-chloromethyl-4-methoxy-3,5-dimethyl pyridine hydrochloride 3 to yield 4 and its subsequent oxidation with m-CPBA to produce sulfoxide 1. The process has been scaled up for the multikilogram-scale of compound 1 with an overall yield of 72%. The new process requires no purification process and affords the target compound 1 with 99.8% purity by HPLC.

2-[2-(3,5-dimethyl)pyridylmethylsulfinyl]-5-methoxyimidazo[4,5-b]pyridine (1, 15.5 kg, 74%). Purity by HPLC 99.8%; 1H NMR (200 MHz, DMSO) δ 2.2 (s, 6H), 3.8 (s, 6H), 4.8 (s, 2H), 6.6 (d, 1H), 7.8 (d, 1H), 8.2 (s, 1H), 13.0 (s, 1H).

PATENT

http://www.google.co.in/patents/US7507746

the (+) enantiomer of tenatoplazole can be obtained by using chloroform, an industrially acceptable solvent, in accordance with the method proposed by Umemura et al. (J. Org. Chem. 1993, 58, 4592) as follows:

Figure US07507746-20090324-C00001

Example 1 (−)-5-methoxy-2-{(4-methoxy-3,5-dimethyl-2-pyridyl)methyl]sulfinyl}-1H-imidazo[4,5-b]pyridineThe conditions for preparative chromatography, shown as an example, are as follows:

Column: 265×110 mm ChiralPak®

Chiral Stationary Phase selector of the Amylose tris type [(S)-a methylbenzylcarbamate]

Flow rate: 570 ml/min

Detection: UV 240 nm

Temperature: Ambient temperature

These conditions are implemented on a liquid preparative chromatography apparatus.

Introduce approximately 2 g of the racemic mixture if tenatoprazole exhibiting purity higher than 99.5%. The (−) enantiomer is identified by measuring the angle of optical rotation, which must be laevogyre. This measurement can be performed directly on the column, the product being dissolved in the solvent (acetonitrile).

Example 2 (+)-5-methoxy-2-{(4-methoxy-3, 5-dimethyl-2-pyridyl)methyl]sulfinyl}-1H-imidazo[4,5-b]pyridine(R)-(+)-binaphthol 85 g (0.311 mol, 0.2 equivalence), ortho titanic acid isopropyl 42 g (0.148 mol, 0.1 equivalence), water 55 g (3.06 mol) and chloroform 7.5 L were stirred for 1 hour at room temperature. To the resultant, 5-methoxy-2-{(4-methoxy-3,5-dimethyl-2-pyridyl)methyl]thio}imidazo[4,5-b]pyridine (MPI), 0.5 kg, was added and stirred for 0.5 hours at room temperature. The thus-prepared mixture was cooled to 5° C. and then 70% aqueous solution of tert-butylhydroperoxide, 0.4 L (approx. 3.0 mol, 2.0 equivalence) was added and stirred for 72 hours at the same temperature as above. After the reaction endpoint was confirmed by HPLC, an aqueous solution of sodium hydroxide was added thereto to separate the aqueous layer, thus removing foreign matter. Then, the resultant was concentrated. Ethyl acetate was added to concentrated residues, which were then heated and suspended. The thus-prepared crude crystalline substances were dissolved in water and neutralized to pH 6.8 with a diluted sulfuric acid solution which was chilled with ice. Deposited crystals were filtered, dried and recrystallized by addition of ethanol to obtain (+)-5-methoxy-2-{(4-methoxy-3,5-dimethyl-2-pyridyl)methyl]sulfinyl}-1H-imidazo[4,5-b]pyridine {(+)-TU-199}

Yield: 77%

Optical purity: 96.6% ee

Chemical purity: 94.5%

Melting point: 135° C.

Optical rotation: +184° (conditions: C=1.0, N,N-dimethylformaldehyde solution)

Ultraviolet absorption spectrum: (10 μg/mL)λmax (nm): 316, 273, 206

When measurements were carried out, for a solubility of (+), (−) forms and a racemic form (±) of tenatoprazole in relation to water, it was found that the (+) form dissolved almost 3 times greater than the racemic body and (−) form dissolved over 2 times greater than the racemic form, exhibiting favorable physical properties in preparing drugs (refer to Table 2 below).

TABLE 2
(+) form (−) form (±)racemic form
Solubility (water) μg/mL 93.0 74.4 34.6

CLIPS

Tenatoprazole is a pyridinylmethylsulfinyl imidazopyridine compound, which is a weak base. This compound has three pKas. One is the pyridine pKa of pyridinylmethyl moiety and the others are the imidazole pKa and the pyridine pKa of the imidazopyridine moiety. The pyridine pKa1 enables tenatoprazole accumulation in the acidic canaliculus of the parietal cell. Protonation of the imidazopyridine ring enhances electron deficiency at the C-2 position, allowing intramolecular rearrangement to the active form. The active form is the sulfenic acid and/or cyclic sulfonamide, and reacts with luminal cysteine thiols of the enzyme to inhibit the enzyme activity

Synthesis route
from 2-mercapto-5-methoxy-imidazo [4,5-b] pyridine (2) and 2-chloro-3,5-dimethyl-4-methoxypyridine hydrochloride ( 3) by nucleophilic substitution synthesis of 2- (4-methoxy-3,5-dimethyl-2-methylthio) -5-methoxy-imidazo [4,5-b] pyridine (4) the oxidation of 4 1. Figure 1 is a synthesis route of tenatoprazole
Scheme of tenatoprazole

References

  1. DataMonitor. March 2003. Gastrointestinal Disease Update: Digestive Disease Week 2003
  2. Economic Times. 3 March, 2011. Investors unwilling to forgive Wockhardt, promoter for failings
  3. Mitsubishi Tanabe Pharma State of New Product Development (as of May 8, 2012)
  4. Mitsubishi Tanabe Pharma FY2007 Interim Financial Results
  5. Li H et al. H+/K+-ATPase inhibitors: a patent review. Expert Opin Ther Pat. 2013 Jan;23(1):99-111. PMID 23205582
US4808596 * 24 Jul 1987 28 Feb 1989 Tokyo Tanabe Company, Ltd. Imidazo[4,5-b]pyridine compounds and pharmaceutical compositions containing same
US5753265 * 7 Jun 1995 19 May 1998 Astra Aktiebolag Multiple unit pharmaceutical preparation
US5798120 * 6 Oct 1994 25 Aug 1998 Tokyo Tanabe Company Limited Enteric granule-containing tablets
EP0124495A2 28 Feb 1984 7 Nov 1984 Aktiebolaget Hässle Omeprazole salts
EP0254588A1 24 Jul 1987 27 Jan 1988 Tokyo Tanabe Company Limited Imidazo[4,5-b] pyridine compounds, process for preparing same and pharmaceutical compositions containing same
Reference
1 * Andersson et al., Pharmacology & Therapeutics, 2005, vol. 108, pp. 294-307.
2 * Anon et al., Drugs in R&D, 2002, vol. 3, pp. 276-277.
3 Kakinoki et al., Methods and Findings in Experimental and Clinical Pharmacology, 21(3): 179-187 (1999).
4 Komatsu et al., J. Org. Chem., 58(17): 4529-4533 (1993).
5 Uchiyama et al., Journal of Pharmacy and Pharmacology, 51(4): 457-464 (1999).
6 Uchiyama et al., Methods and Findings in Experimental and Clinical Pharmacology, 21(2): 115-122 (1999).
Citing Patent Filing date Publication date Applicant Title
US20120220623 * 30 Aug 2012 Mitsubishi Tanabe Pharma Corporation The enantiomer of tenatoprazole and the use thereof in therapy
CN1453278A * May 10, 2002 Nov 5, 2003 中国人民解放军军事医学科学院放射医学研究所 Omprazole compound and its prepn and application
CN1861600A * Jun 14, 2006 Nov 15, 2006 浙江大学 Preparation process of taytrolazole
Reference
1 * 《Organic Process Research & Development》 20081112 Somaiah Sripathi et al. An Improved Synthesis of Antiulcerative Drug:Tenatoprazole 第804-806页 1-6 第13卷,
2 * 《Synthetic Communication》 20080101 Liyan Dai et al. Improved Synthetic Approach to Tenatoprazole 第576-582页 1-6 第38卷,
3 * 《中国药物化学杂志》 20061231 赵冬梅等 抗溃疡药泰妥拉唑的合成 第360-362页 1-6 第16卷, 第6期
Tenatoprazole
Tenatoprazole.svg
Systematic (IUPAC) name
5-methoxy-2-[(4-methoxy-3,5-dimethylpyridin-2-yl)methylsulfinyl]-1H-imidazo[4,5-b]pyridine
Clinical data
Routes of
administration
Oral
Pharmacokinetic data
Metabolism Hepatic (CYP2C19-mediated)
Biological half-life 4.8 to 7.7 hours
Identifiers
CAS Number 113712-98-4 Yes
ATC code none
PubChem CID 636411
ChemSpider 552196 Yes
UNII RE0689TX2K Yes
Chemical data
Formula C16H18N4O3S
Molar mass 346.405 g/mol
Chirality Racemic mixture

テナトプラゾール
Tenatoprazole

C16H18N4O3S : 346.4
[113712-98-4]

/////////////Tenatoprazole, 113712-98-4, TU-199, proton pump inhibitor,  treatment of gastroesophageal reflux disease, Mitsubishi Tanabe Pharma,  Negma Laboratories, PHASE 1, テナトプラゾール

CC1=CN=C(C(=C1OC)C)CS(=O)C2=NC3=C(N2)C=CC(=N3)OC

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: