AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

Prof. K.V. Thomas Endowment International Symposium on New Trends in Applied Chemistry (NTAC -2017) 9-11 February, 2017, Department of Chemistry, Sacred Heart College (Autonomous), Thevara, Kochi, India

 CONFERENCE, Uncategorized  Comments Off on Prof. K.V. Thomas Endowment International Symposium on New Trends in Applied Chemistry (NTAC -2017) 9-11 February, 2017, Department of Chemistry, Sacred Heart College (Autonomous), Thevara, Kochi, India
Nov 052016
 

str0

 

Hearty Welcome to International Symposium, NTAC – 2017

The organizing committee of NTAC – 2017 and The Post Graduate and Research Department of Chemistry, Sacred Heart College (Autonomous),Thevara, Kochi , India are pleased to announce and invite you to attend the Prof. K.V. Thomas Endowment International symposium on New Trends in Applied Chemistry-2017 (NTAC-2017).

Prof. K.V. Thomas Endowment International Symposium on New Trends in Applied Chemistry (NTAC -2017)9-11 February, 2017, Department of Chemistry, Sacred Heart College (Autonomous), Thevara, Kochi, India link ishttp://www.ntac.shcollege.in/ please click

 

Symposium Dates: 9-11 February, 2017
Last Date for Abstract Submission: 9th December 2016
Last Date for Submission of Full Paper: 9th January 2017
Early Bird Registration: 9th December 2016

SH Symposium

Hearty Welcome to International Symposium, NTAC – 2017

The organizing committee of NTAC – 2017 and The Post Graduate and Research Department of Chemistry, Sacred Heart College (Autonomous),Thevara, Kochi are pleased to announce and invite you to attend the Prof. K.V. Thomas Endowment International symposium on New Trends in Applied Chemistry-2017 (NTAC-2017).
VENUE

Inaugural Session:  Sacred Heart College,Thevara

Technical Sessions:  Crowne Plaza, Kochi

Eminent scholars and young investigators, covering different parts of the globe are expected to participate in the symposium.
The theme of the three day symposium cover the following areas:

  • Medicinal and Pharmaceutical chemistry
  • Flow chemistry
  • Synthesis of natural and unnatural materials
  • Enzymes and biochemistry
  • Organometallic/Catalysis
  • Material science
  • Polymer chemistry
  • Computational chemistry

We cordially invite you to present your most recent research accomplishments, share your knowledge, and actively engage in scientific discourse with other experts in NTAC-2017.

CONTACT
Dr. Grace Thomas
Convener, NTAC – 2017
The Post Graduate and Research Department of Chemistry,
Sacred Heart College (Autonomous), Thevara Kochi-682013 Kerala, India
Ph: +91-9447124334 E-mail: ntac2017@shcollege.ac.in
www.ntac.shcollege.in

http://www.ntac.shcollege.in/

////////

Share

Statistical DoE Approach to the Removal of Palladium from Active Pharmaceutical Ingredients (APIs) by Functionalized Silica Adsorbents

 QbD, regulatory  Comments Off on Statistical DoE Approach to the Removal of Palladium from Active Pharmaceutical Ingredients (APIs) by Functionalized Silica Adsorbents
Nov 032016
 

Abstract Image

The influence of four parameters (temperature, scavenging time, amount of scavenger, and concentration of palladium in the solution) on the efficiency of Pd removal from a cross-coupling reaction, using a commercially available Pd scavenger, SPM32, was studied. The DoE-based method employed yielded more information than is readily attainable from standard adsorption isotherms and kinetics experiments. The optimal regime of scavenging was identified; intuitive and nonintuitive effects of temperature, scavenging time, and scavenger amounts were highlighted; and a mathematical model quantifying predicted Pd removal from the synthetic intermediate was built.

link http://pubs.acs.org/doi/abs/10.1021/op5000336

Statistical DoE Approach to the Removal of Palladium from Active Pharmaceutical Ingredients (APIs) by Functionalized Silica Adsorbents

PhosphonicS Ltd., 44c Western Avenue, Milton Park, Abingdon, OX14 4RU, United Kingdom
Org. Process Res. Dev., 2014, 18 (5), pp 626–635
DOI: 10.1021/op5000336
Publication Date (Web): April 14, 2014
Copyright © 2014 American Chemical Society
str0

Preparation of tert-butyl 2-[(4-cyanophenyl)amino]propanoate (3).

4-Bromobenzonitrile (18.20 g, 100 mmol), L-alanine tert-butyl ester hydrochloride (21.73 g, 120 mmol), ±BINAP (1.25 g, 2 mmol) and cesium carbonate (48.87 g, 150 mmol) were added to a 3-neck round bottom flask containing a magnetic stirrer. Toluene (167 mL) was added and a reflux condenser, thermometer and a rubber septum were attached. Argon gas was bubbled through as the heterogeneous mixture was warmed to reflux temperature with slow agitation from the magnetic stirrer. Palladium acetate (0.45 g, 2 mmol) was added quickly through one of the side-arm joints and de-gassing was continued for 5 min. The reaction mixture was kept under argon at reflux and the disappearance of 4-bromobenzonitrile was monitored by GC-MS. After 16-24 h, the reaction mixture was filtered through a sinter funnel, washed with toluene and then filtered through a nylon membrane (Sigma Aldrich catalogue no. Z290793, 0.45 µm pore size) and washed with toluene. This crude reaction mixture was used in the DoE matrix without further purification.

Experimental results

NMR δC (62.9 MHz, CDCl3): 172.7, 150.0, 133.7, 120.4, 112.7, 99.3, 82.3, 51.7, 28.0, 18.5 ppm.

NMR δH (250 MHz, CDCl3): 7.39 (2H, d, J = 8.8 Hz, Ph), 6.52 (2H, d, J = 8.8 Hz, Ph), 4.85 (1H, d, J = 7.4 Hz, NH), 4.01 (1H, quintet, J = 7.4 Hz, CH(Me), 1.43 (9H, s, tBu), 1.42 (3H, d, J = 7.4 Hz, Me).

GC/MS: GC method used: hold at 50 °C for 4 min; increase temperature from 50 to 280 °C at 30 °C / min; hold at 280 °C for 5 min. Peaks were recorded and identified as follows: 4-Bromobenzonitrile: 10.05 min. Molecular peak observed at m/z = 181 for the 79Br isotope, m/z = 183 for the 81Br isotope L-alanine tert-butyl ester hydrochloride: not observed. Retention time less than 5 min, peak lost within the solvent front. Product: 13.64 min. Molecular peak observed at m/z = 246, main fragment at m/z = 146 (M – CO2 t Bu) Side product (not identified or quantified, minor peak): 14.56 min.

str0 str2

Jan Recho

Jan Recho

Jan Recho

Systems developer at Clearsy

Corresponding Author *E-mail: jan.recho@phosphonics.com.

Experience

Systems Developer

Clearsy

– Present (1 year 6 months)

Scientist

PhosphonicS

(3 years 6 months)

• Design and synthesis of silica supported transition metals scavengers and catalysts (Pd, Rh, Ru) for the pharmaceutical industry.
• Management of fine chemistry customer projects
• Process optimisation (Quality by Design – QbD, Design of Experiments – DoE).
• Business development activities for the French market

Junior researcher

Institut des Matériaux de Nantes

(4 years 8 months)Nantes Area, France

Synthesis and characterisation of a cellulose derived, organosilane-based, bio-material for cartilage growth.
Work in imidazolium and pyridinium ionic liquids.

Share

Rush , few seats, ACS INDUSTRY SYMPOSIUM RECENT ADVANCES IN DRUG DEVELOPMENT IN PARTNERSHIP WITH DR. REDDY’S LABORATORIES HYDERABAD, INDIA 11-12 NOVEMBER 2016

 CONFERENCE  Comments Off on Rush , few seats, ACS INDUSTRY SYMPOSIUM RECENT ADVANCES IN DRUG DEVELOPMENT IN PARTNERSHIP WITH DR. REDDY’S LABORATORIES HYDERABAD, INDIA 11-12 NOVEMBER 2016
Nov 032016
 

str1

ACS INDUSTRY SYMPOSIUM

RECENT ADVANCES IN DRUG DEVELOPMENT IN PARTNERSHIP WITH DR. REDDY’S LABORATORIES HYDERABAD, INDIA

11-12 NOVEMBER 2016

for registrations
Share

QbD Sitagliptin

 QbD  Comments Off on QbD Sitagliptin
Oct 302016
 

 

str0

Image result for sitagliptin qbd

 

Application of On-Line NIR for Process Control during the Manufacture of Sitagliptin

Global Science, Technology and Commercialization, Merck Sharp & Dohme Corporation P.O. Box 2000, Rahway, New Jersey 07065, United States
Org. Process Res. Dev., 2016, 20 (3), pp 653–660
DOI: 10.1021/acs.oprd.5b00409
Publication Date (Web): February 12, 2016
Copyright © 2016 American Chemical Society

Abstract

Abstract Image

The transamination-chemistry-based process for sitagliptin is a through-process, which challenges the crystallization of the active pharmaceutical ingredient (API) in a batch stream composed of multiple components. Risk-assessment-based design of experiment (DoE) studies of particle size distribution (PSD) and crystallization showed that the final API PSD strongly depends on the seeding-point temperature, which in turn relies on the solution composition. To determine the solution composition, near-infrared (NIR) methods had been developed with partial least squares (PLS) regression on spectra of simulated process samples whose compositions were made by spiking each pure component, either sitagliptin free base (FB), water, isopropyl alcohol (IPA), dimethyl sulfoxide (DMSO), or isopropyl acetate (IPAc), into the process stream according to a DoE. An additional update to the PLS models was made by incorporating the matrix difference between simulated samples in lab and factory batches. Overall, at temperatures of 20–35 °C, the NIR models provided a standard error of prediction (SEP) of less than 0.23 wt % for FB in 10.56–32.91 wt %, 0.22 wt % for DMSO in 3.77–19.18 wt %, 0.32 wt % for IPAc in 0.00–5.70 wt %, and 0.23 wt % for water in 11.20–28.58 wt %. After passing the performance qualification, these on-line NIR methods were successfully established and applied for the on-line analysis of production batches for compositions prior to the seeding point of sitagliptin crystallization.

http://pubs.acs.org/doi/abs/10.1021/acs.oprd.5b00409?journalCode=oprdfk

 

Next…………..

A biocatalytic manufaturing route for januvia – Society of Chemical …

www.soci.org/~/media/Files/…/2011/…/Jake_Janey_Presentation.ashx

Nov 2, 2011 – 9 Steps, 52% overall yield, >100Kg of sitagliptin prepared ….. FDA filings requires “Quality by Design”: A way to allow process changes within.

A PRESENTATION

 

 

A PRESENTATION

Example of QbD Application in Japan

https://www.pmda.go.jp/files/000213677.pdf

Aug 11, 2016 – QbD assessment experience in Japan … Number of Approved Products with QbD … Active Ingredient : Sitagliptin Phosphate Hydrate.

WILL BE UPDATED WITH MORE, WATCH OUt

/////////

Name Explanation
Active Pharmaceutical Ingredient (API) An active pharmaceutical ingredient (API) is a substance used in a finished pharmaceutical product, intended to furnish pharmacological activity or to otherwise have direct effect in the diagnosis, cure, mitigation, treatment or prevention of disease, or to have direct effect in restoring, correcting or modifying physiological functions in human beings.

 

Annual Product Reviews (APR) The Annual Product Reviews (APR) include all data necessary for evaluation of the quality standards of each drug product to determine the need for changes in drug product specifications or manufacturing or control procedures. The APR is required by the U.S. Code of Federal Regulations.
ANVISA The Brazilian Health Surveillance Agency (in Portuguese, Agência Nacional de Vigilância Sanitária) is a governmental regulatory body in Brazil. Similar to the FDA in the United States, it oversees the approval of drugs and other health products and regulates cosmetics, food products, and other health-related industries.
Biologic License Application (BLA) The Biologics License Application (BLA) is a request for permission to introduce, or deliver for introduction, a biologic product into commerce in the U.S.
CFDA The China Food and Drug Administration is similar to the FDA in the United States and is responsible for regulating food and drug safety.
cGMP Current Good Manufacturing Practices govern the design, monitoring, and control of manufacturing facilities and processes and are enforced by the US FDA. Compliance with these regulations helps safeguard a drug’s identity, strength, quality, and purity.
COFEPRIS The Federal Commission for Protection against Sanitary Risks (in Spanish, Comisión Federal para la Protección contra Riesgos Sanitarios) is a government agency in Mexico. It regulates food safety, drugs, medical devices, organ transplants, and environmental protection.
Common Technical Document (CTD) The Common Technical Document (CTD) is the mandatory common format for new drug applications in the EU and Japan, and the U.S. The CTD assembles all the Quality, Safety and Efficacy information necessary for a drug application.
European Medicines Agency (EMA) The European Medicines Agency (EMA) is a decentralised agency of the European Union (EU), located in London. It began operating in 1995. The Agency is responsible for the scientific evaluation, supervision and safety monitoring of medicines developed by pharmaceutical companies for use in the EU.
Food and Drug Administration (FDA) The Food and Drug Administration (FDA) is an agency within the U.S. Department of Health and Human Services. The FDA is responsible for the approval of new pharmaceutical products for sale in the U.S. and performs audits at the companies participating in the manufacture of pharmaceuticals to ensure that they comply with regulations.
Human growth hormone A growth hormone (GH or HGH) is a peptide hormone produced by the pituitary gland that stimulates growth in children and adolescents. It is involved in several body processes, including cell reproduction and regeneration, regulation of body fluids, and metabolism. It can be produced by the body (ie, somatotropin) or genetically engineered (ie, somatropin).
In-Process Control (IPC) In-Process Controls (IPC) are checks performed during production in order to monitor and if necessary to adjust the process to ensure that the product conforms its specification.
Interferons (INFs) Interferons are proteins produced by the body as part of the immune response. They are classified as cytokines, proteins that signal other cells to trigger action. For example, a cell infected by a virus will release interferons to stimulate the defenses of nearby cells.
Interleukins Interleukins are proteins produced by cells as an inflammatory response. Most interleukins help leukocytes communicate with and direct the division and differentiation of other cells.
Investigational Medicinal Product Dossier (IMPD) The Investigational Medicinal Product Dossier (IMPD) is the basis for approval of clinical trials by the competent authorities in the EU. The IMPD includes summaries of information related to the quality, manufacture and control of the Investigational Medicinal Product, data from non-clinical studies and from its clinical use.
Investigational New Drug (IND) An Investigational New Drug application is provided to the FDA to obtain permission to test a new drug in humans in Phase I – III clinical studies. The IND is reviewed by the FDA to ensure that study participants will not be placed at unreasonable risk.
Marketing Authorization Application (MAA) The Marketing Authorization Application (MAA) is a common document used as the basis for a marketing application across all European markets, plus Australia, New Zealand, South Africa, and Israel. This application is based on a full review of all quality, safety, and efficacy data, including clinical study reports.
Master batch records These general manufacturing instructions, which are required by cGMP, are the bases for a precise, detailed description of a pharmaceutical manufacturing process. They ensure that all proper ingredients are included, each process step is completed, and the process is controlled.
Medicines and Healthcare Products Regulatory Agency (MHRA) The Medicines and Healthcare products Regulatory Agency (MHRA) regulates medicines, medical devices and blood components for transfusion in the UK. MHRA is an executive agency, sponsored by the Department of Health.
MFDS The Ministry of Food and Drug Safety (formerly the Korean Food & Drug Administration) is a government agency that oversees the safety and efficacy of drugs and medical devices in South Korea.
Monoclonal antibodies Monoclonal antibodies are antibodies made in a laboratory from identical immune cells that are clones of a single cell. They are distinct from polyclonal antibodies, which are made from different immune cells.
NDA A New Drug Application (NDA) is the vehicle submitted to the FDA by drug companies in order to gain approval to market a new product. Safety and efficacy data, proposed package labeling, and the drug’s manufacturing methods are typically included in an NDA.
New Drug Application (NDA) The New Drug Application (NDA) is the vehicle through which drug sponsors formally propose that the FDA approve a new chemical pharmaceutical for sale and marketing in the U.S.

 

Oligonucleotides These short nucleic acid chains (made up of DNA or RNA molecules) are used in genetic testing, research, and forensics.
Parenteral Parenteral medicine is taken or administered in a manner other than through the digestive tract. Intravenous and intramuscular injections are two examples.
Peptide hormones Peptide hormones are proteins secreted by organs such as the pituitary gland, thyroid, and adrenal glands. Examples include follicle-stimulating hormone (FSH) and luteinizing hormone. Similar to other proteins, peptide hormones are synthesized in cells from amino acids.
PMDA The Pharmaceuticals Medical Devices Agency is an independent administrative agency that works with the Ministry of Health, Labour and Welfare to oversee the safety and quality of drugs and medical devices in Japan.
Process Analytical Technology (PAT) These analytical tools help monitor and control the manufacturing process, including accommodating for variability in material and equipment, in order to ensure consistent quality.
Product Quality Reviews (PQR) The Product Quality Reviews (PQR) of all authorized medicinal products, is conducted with the objective of verifying the consistency of the existing process, the appropriateness of current specifications for both starting materials and finished product, to highlight any trends and to identify product and process improvements. The PQR is required by the EU GMP Guideline.
Quality by Design (QbD) This concept involves a holistic, proactive, science- and risk-based approach to the development and manufacturing of drugs. At the heart of QbD is the idea that quality is achieved through in-depth understanding of the product and the process by which it is developed and manufactured.
Restricted Access Barrier System (RABS) This advanced aseptic processing system provides an enclosed environment that reduces the risk of contamination to the product, containers, closures, and product contact surfaces. As a result, it can be used in many applications in a fill-finish area.
Scale-up Scale-up involves taking a small-scale manufacturing system developed in the laboratory to a commercially viable, robust production process.
Six Sigma Six Sigma is a set of quality management methods, techniques, and tools used to improve manufacturing, transactional, and other business processes. The goal is to enhance quality (as well as employee morale and profits) by identifying and eliminating the cause of errors and process variations.
Target Product Profile (TPP) This key strategic document summarizes the features of an intended drug product. Characteristics may include the dosage form, route of administration, dosage strength, pharmacokinetics, and drug product quality criteria.
TFDA The Taiwan Food & Drug Administration is a governmental body devoted to enhancing food safety and drug quality in that country.
Share

Critical Impurities in Pharmaceutical Water

 regulatory  Comments Off on Critical Impurities in Pharmaceutical Water
Oct 272016
 

Image result for Pharmaceutical Water

The quality of the source water used to produce pharmaceutical water plays an important role for both the design of the treatment and the validation of the water system. FDA Warning Letters over the past few years have shown that compliance with the specification of pharmaceutical water is not enough. A validation of the treatment process is expected. This includes documentation of the process capacity to produce pharmaceutical water according to specification. If we do not know the quality of the source water, however, the purification capacity is not known either. As a consequence, fluctuations of the quality of the source (feed) water quality may lead to water that does not comply with the specification after purification. Or it is not known up to which quality level of the source water pharmaceutical water that complies with the specification can be produced. Therefore, it is important to know the impurities respectively their concentration in the source (feed) water.
The production of pharmaceutical water is always based on drinking water. The specifications for drinking water however (for Germany, stipulated in the Trinkwasserverordnung; for the U.S., in the National Primary Drinking Water Regulation) are defined very broadly compared to Pharmacopoeial specifications.

The quality of the drinking water varies widely as well, as drinking water may come from different sources (ground water or surface water). Even the ground water quality varies locally, e. g., depending on the season. This is why water purification plants for the pharmaceutical industry are not ready-made goods, but individual solutions that have to be developed by the future user and the plant supplier together. The plant supplier will always ask about the quality of the drinking water so that he can offer the appropriate processing technologies.

In particular, he will need the following information. For this purpose, it is useful to provide the plant engineer with various drinking water analyses over a minimum period of twelve months.

For the design of a pharmaceutical water plant, the indicator parameters according to the Trinkwasserverordnung (conductivity, iron, manganese, sulphate and pH value) are important, as the amount of the ionic load determines the treatment process. For instance, a single-stage or double-stage reverse osmosis may be sufficient to obtain adequate quality at low conductivity levels. Iron and manganese are limited by the drinking water ordinance, but will lead to irreversible membrane damage at the reverse osmosis plant when their limits (according to the Trinkwasserverordnung) are exceeded.

Image result for Pharmaceutical Water

Furthermore, information on the total hardness is indispensable, as it has a major influence on the design of the softening plant – as well as on carbonate hardness or base capacity which are used to calculate the amount of dissolved carbon dioxide. This parameter restricts the use of EDI or may require further treatment, such as membrane degassing.

Depending on the origin of the drinking water, a responsible plant engineer should measure the colloid index (SDI 15) before designing the plant. Especially with surface water, higher amounts are to be expected. A colloid index of more than 5%/min can already have a negative impact on the operation of a reverse osmosis plant (membrane blocking and/or fouling) and may require additional treatment techniques, such as ultrafiltration before the main plant. While the colloid index is never determined via the water supplier, the silicate content is often indicated in the drinking water analysis. A silicate content of more than 25 ppm can become critical for a combination of reverse osmosis and EDI and should also be determined in case it is not indicated in the analysis.

All microbiological parameters have been regulated in the Trinkwasserverordnung. However, you should always remember that the supplier guarantees the quality only up to the point of transfer. With regards to the total bacteria count in particular, regular tests are necessary in order to identify seasonal fluctuations.

http://www.gmp-compliance.org/enews_5532_Critical-Impurities-in-Pharmaceutical-Water_n.html

 

Image result for Pharmaceutical Water

 

 

Image result for Pharmaceutical Water

////////////Critical Impurities, Pharmaceutical Water

Share

FDA presentation at the ECA Conference Particles in Parenterals

 regulatory  Comments Off on FDA presentation at the ECA Conference Particles in Parenterals
Oct 272016
 

Image result for visual inspection of medicinal products for parenteral use.

At the Particles in Parenterals Conference Dr Stephen Langille from the US FDA gave a talk on the FDA’s current thinking with regard to the visual inspection of medicinal products for parenteral use.

http://www.gmp-compliance.org/enews_05610_FDA-presentation-at-the-ECA-Conference-Particles-in-Parenterals_S-PTK_n.html

 

Dr Stephen Langille from the US FDA gave a talk on the FDA’s current thinking with regard to the visual inspection of medicinal products for parenteral use. In his presentation he showed the number of recalls caused by visible particulate matter over the last 11 years. For him, most of the recalls were justified when the types of particles found were taken into consideration. He also emphasized that something is possibly wrong in the visual inspection process if particles found in the market are bigger than 1000 µm.

The prevention of particles is very important to him. From his perspective the best particle is one which is not in the product. Also important to him are threshold studies, meaning to show the minimum particle size which can still be detected (dependent of product and type of container). These threshold studies are crucial for the setup of the test sets and the qualification of the inspectors of the manual inspection. He also mentioned the semi-automated inspection process. For him semi-automated inspection is good for detecting container-closure issues, like missing stoppers. But he also questioned whether an inspection time of about one second is suitable to detect particles with a size of 200µm for example. In the discussion he was asked about FDA’s opinion on the USP chapter <790>. In his opinion, USP chapter <790> can be an effective tool for ensuring that the manufacturing process and 100% inspection process are adequate to limit visible particle contamination. However, cGMPs must be followed during the manufacturing and visual inspection process. Meeting the requirements of USP <790> should not be used to excuse not meeting cGMPs.

You will find the complete presentation in the members area of the ECA webpage.

 

.///////////FDA presentation, ECA Conference , Particles in Parenterals

Share

The impact of the FDA Combination Products Guidance on Nasal and Oral Inhalation Drug Products

 regulatory  Comments Off on The impact of the FDA Combination Products Guidance on Nasal and Oral Inhalation Drug Products
Oct 272016
 

Image result for Oral Inhalation and Nasal Drug Products

The FDA draft guidance for combination products has a substantial impact on the development of Oral Inhalation and Nasal Drug Products (OINDPs) as it requires that the manufacturers have to be compliant not only with CGMPs for the drugs (21 CFR Parts 210 and 211) but also with the quality system (QS) regulations for devices (21 CFR Part 820). Find out more about the FDA Draft Guidance for Combination Products.

http://www.gmp-compliance.org/enews_05639_The-impact-of-the-FDA-Combination-Products-Guidance-on-Nasal-and-Oral-Inhalation-Drug-Products_15462,Z-QCM_n.html

Based on the CGMP requirements for single-entity and co-packaged combination products (21 CFR Part 4) the manufacturers of Oral Inhalation and Nasal Drug Products (OINDPs) have to be compliant with CGMPs for the drug constituent part(s) (21 CFR Parts 210 and 211) and the quality system (QS) regulations for device constituent part(s) (21 CFR Part 820).

This can be achieved either by a drug CGMP-based streamlined approach (21 CFR 4.4(a)) or a QS regulation-based streamlined approach (21 CFR 4.4(b)).  Following the first approach the combination product manufacturers have to be compliant with the drug CGMP and device QS regulation requirements:

– 21 CFR 820.20 – Management responsibility
– 21 CFR 820.30 – Design controls
– 21 CFR 820.50 – Purchasing controls
– 21 CFR 820.100 – Corrective and preventive actions
– 21 CFR 820.170 – Installation
– 21 CFR 820.200 – Servicing

The OINDP manufacturers have to be clearly stated in their submission and at the initiation of a pre-approval inspection (PAI) whether they are operating under the drug CGMP or QS regulation-based approach.

Here you can see the complete FDA Draft Guidance on Combination Products including the requirements for Oral Inhalation and Nasal Drug Products.
////// FDA Combination Products Guidance, Nasal and Oral Inhalation,  Drug Products

Share

Counterfeit of medicines causes 37,000 job losses in EU Pharma Industry

 regulatory  Comments Off on Counterfeit of medicines causes 37,000 job losses in EU Pharma Industry
Oct 272016
 

Image result for Counterfeit medicine

 

Counterfeit medicine is an increasing problem for public health and economy. This is no longer a problem of certain regions such as Asia and Africa. It has now also become an issue in the EU and US. The European Union Intellectual Property Office (EUIPO) published a press release on 29 September 2016 in which they state that fake medicines cost the EU pharmaceutical sector 10.2 billion Euro every year. Read more about the latest figures on counterfeit medicines

http://www.gmp-compliance.org/enews_05605_Counterfeit-of-medicines-causes-37-000-job-losses-in-EU-Pharma-Industry_15356,S-QSB_n.html

 

str1 str2

Counterfeit medicine is an increasing problem for public health and economy. This is no longer a problem of certain regions such as Asia and Africa. It has now also become an issue in the EU and the US. In the past, counterfeit medicines could not enter the legal supply chain in the EU and US. But the problem has now also been arising in western countries. A number ofcases of counterfeit medicines were detected recently. In order to cope with this increasing problem, the EU has introduced a regulation which requires that as of 9th February 2019 certain medicinal products can only enter the EU market if a 2D barcode is used as a safety feature. This code must be applied on the packaging in readable form.

The European Union Intellectual Property Office (EUIPO) published a press release on 29 September 2016 in which they state that fake medicines cost the EU pharmaceutical sector 10.2 billion Euro every year. The counterfeit products cause a loss of 4.4% of the legitimate sales of pharmaceuticals. This means “37,700 jobs directly lost across the pharmaceutical sector in the EU” according to the report. Only for Germany, an annual loss of 1 billion Euro has been calculated which caused a direct job loss of 6,951. Regarding other countries, the figures are: Italy 1.59 billion, France 1 billion, Spain 1,17 billion and UK 605 million loss annually.

Source: Press Release EUIPO, September 29, 2016

 

//////////Counterfeit of medicines, 37,000 job losses,  EU Pharma Industry

Share

Reformatsky and Blaise Reactions in Flow as a Tool for Drug Discovery. One Pot Diversity Oriented Synthesis of Valuable Intermediates and Heterocycles

 FLOW CHEMISTRY, flow synthesis  Comments Off on Reformatsky and Blaise Reactions in Flow as a Tool for Drug Discovery. One Pot Diversity Oriented Synthesis of Valuable Intermediates and Heterocycles
Oct 232016
 

str0 str1 str2

 

 

Compound 3aa was obtained as pale yellow oil (163 mg, 92% yield).MS (ESI): mass calcd. for C12H16O3, 208.1099; m/z found, 209.1102 [M+H] + .

1H NMR (CHLOROFORM-d, 400MHz): δ = 7.45 (d, J=7.7 Hz, 2H), 7.33 (t, J=7.5 Hz, 2H), 7.21-7.27 (m, 1H), 4.37 (s, 1H), 4.00-4.18 (m, 2H), 2.97 (d, J=15.9 Hz, 1H), 2.79 (d, J=15.9 Hz, 1H), 1.55 (s, 3H), 1.08-1.18 ppm (m, 3H).

13C NMR (CHLOROFORM-d, 101MHz): δ = 173.1, 147.3, 128.6, 127.3, 124.9, 73.2, 61.4, 46.9, 31.1, 14.4 ppm

 

str0

 

The application of Reformatsky and Blaise reactions for the preparation of a diverse set of valuable intermediates and heterocycles in a one-pot protocol is described. To achieve this goal, a novel green activation protocol for zinc in flow conditions has been developed to introduce this metal efficiently into -bromoacetates. The organozinc compounds were added to a diverse set of ketones and nitriles to obtain a wide range of functional groups and heterocyclic systems in a one pot procedure.

http://pubs.rsc.org/en/Content/ArticleLanding/2016/GC/C6GC02619B?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract

Reformatsky and Blaise Reactions in Flow as a Tool for Drug Discovery. One Pot Diversity Oriented Synthesis of Valuable Intermediates and Heterocycles.

Green Chem., 2016, Accepted Manuscript

DOI: 10.1039/C6GC02619B

////////////Reformatsky, Blaise Reactions ,  Flow chemistry,  Drug Discovery. One Pot,  Diversity Oriented Synthesis, Valuable Intermediates,  Heterocycles.

Share

QbD in Pharma Development World Congress 2017, SelectBio, 20-21 April, 2017, Radisson Hyderabad HITEC City, India

 CONFERENCE, QbD  Comments Off on QbD in Pharma Development World Congress 2017, SelectBio, 20-21 April, 2017, Radisson Hyderabad HITEC City, India
Oct 212016
 

str0

 

http://selectbiosciences.com/images/DEL_QBD_20Oct.html

QbD in Pharma Development World Congress 2017 Registration

3 for 2 Offer

SELECTBIO are offering 3 for the price of 2 on all delegate passes. To take advantage of this offer contact us by email, phone or click the Contact Us button below. Looking for more than 3 passes? Contact us for more information on our special rates for large groups.

Radisson Hyderabad HITEC City

Radisson Hyderabad HITEC City

Flights

To find low cost flights, try the following websites:

Flightchecker
Travelsupermarket
Kayak

The refined Radisson Hyderabad Hitec City features the prompt services, such as a concierge, and comfortable, air-conditioned rooms you need for a satisfying visit. You can stay fit with laps in the swimming pool and fitness centre, or relax in your suite with 24-hour room service and free Wi-Fi access. The aminities include Satellite TV, Work desk, Wi-Fi access, Tea and coffeemaker, Bottles of mineral water, Large bathrooms with separate rain showers, Large wardrobe, Mini barWrap up a day of meetings with authentic Indian cuisine at Cascade or exotic Asian specialties at The Oriental Blossom. Treat your colleagues to drinks at Zyng lounge bar, or if the weather is nice, gather outside at Poolside Grill for a barbecued meal.
A business centre is also available to help you complete work while staying at this Hitec City hotel in the heart of Gachibowli, a new-age IT suburb of Hyderabad, near the Hyderabad International Convention Centre.
SELECTBIO has negotiated special rates (see below) to include buffet breakfast, and Wi-Fi. Standard Room Single/Double – INR 4500/5000+Tax
To make your reservation at these discounted rates please contact Sakshi Modgil at s.modgil@selectbio.com. We recommend early booking to avoid disappointment.

Sakshi Modgil's Profile PhotoSAKSHI MODGIL

Visa Requirements
International visitors travelling from outside India will require a Business visa.
PLEASE NOTE, THIS EVENT IS NOT ASSOCIATED WITH THE INDIAN GOVERNMENT, THEREFORE CONFERENCE VISA IS NOT APPLICABLE
International visitors will require an invitation letter to obtain their Business visa. We will only provide invitation letters to customers that are fully registered for the event. In the event of an unsuccessful visa application we will refund the full delegate fee paid.
http://selectbiosciences.com/media/VISA_Invitation_Letter_Requirements.pdf

Visa Invitation Requirement
Please ensure that the above form is duly complete, as it will expedite the preparation of an invitation letter. Also mention clearly, to whom the invitation letter should be addressed as per the requirement of the country of origin.
For more information on Indian visa’s applications for International visitors, please contact your local Indian embassy.
Please plan sufficiently in advance because processing of Indian Visa Application may take 4-6 weeks.

Copyright © 2016 SELECTBIO, All rights reserved.

This email was sent from SELECTBIO Ltd to amcrasto@gmail.com.

SELECTBIO Ltd, Woodview, Bull Lane, Sudbury, CO10 0FD, United Kingdom.

//////////QbD,  Pharma Development,  World Congress,  2017, SelectBio, Radisson Hyderabad HITEC City, India

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: