AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

Tegafur

 Uncategorized  Comments Off on Tegafur
Jun 012017
 

Skeletal formula of tegafur

Tegafur

CAS 17902-23-7

2,​4(1H,​3H)​-​Pyrimidinedione, 5-​fluoro-​1-​(tetrahydro-​2-​furanyl)​-
Molecular Weight,200.17, MF C8 H9 F N2 O3
172-173 °C

Miyashita, Osamu; Chemical & Pharmaceutical Bulletin 1981, 29(11), PG 3181-90

Uracil, 5-fluoro-1-(tetrahydro-2-furyl)-
Utefos
Venoterpine
WY1559000
YR0450000
5-fluoro-1-tetrahydrofuran-2-ylpyrimidine-2,4(1H,3H)-dione
Carzonal
N1-(2′-Furanidyl)-5-fluorouracil
  • Synonyms:Ftorafur
  • ATC:L01BC03
  • EINECS:241-846-2
  • LD50:800 mg/kg (M, i.v.); 775 mg/kg (M, p.o.);
    685 mg/kg (R, i.v.); 930 mg/kg (R, p.o.);
    34 mg/kg (dog, p.o.)

Derivatives, monosodium salt

  • Formula:C8H8FN2NaO3
  • MW:222.15 g/mol
  • CAS-RN:28721-46-2

Tegafur (INN, BAN, USAN) is a chemotherapeutic prodrug of 5-flourouracil (5-FU) used in the treatment of cancers. It is a component of the combination drug tegafur/uracil. When metabolised, it becomes 5-FU.[1]

Medical uses

As a prodrug to 5-FU it is used in the treatment of the following cancers:[2]

It is often given in combination with drugs that alter its bioavailability and toxicity such as gimeracil, oteracil or uracil.[2] These agents achieve this by inhibiting the enzyme dihydropyrimidine dehydrogenase (uracil/gimeracil) or orotate phosphoribosyltransferase (oteracil).[2]

Image result for tegafur

Adverse effects

The major side effects of tegafur are similar to fluorouracil and include myelosuppression, central neurotoxicity and gastrointestinal toxicity (especially diarrhoea).[2] Gastrointestinal toxicity is the dose-limiting side effect of tegafur.[2] Central neurotoxicity is more common with tegafur than with fluorouracil.[2]

Image result for tegafur

Pharmacogenetics

The dihydropyrimidine dehydrogenase (DPD) enzyme is responsible for the detoxifying metabolism of fluoropyrimidines, a class of drugs that includes 5-fluorouracil, capecitabine, and tegafur.[4] Genetic variations within the DPD gene (DPYD) can lead to reduced or absent DPD activity, and individuals who are heterozygous or homozygous for these variations may have partial or complete DPD deficiency; an estimated 0.2% of individuals have complete DPD deficiency.[4][5] Those with partial or complete DPD deficiency have a significantly increased risk of severe or even fatal drug toxicities when treated with fluoropyrimidines; examples of toxicities include myelosuppression, neurotoxicity and hand-foot syndrome.[4][5]

Mechanism of action

It is a prodrug to 5-FU, which is a thymidylate synthase inhibitor.[2]

Pharmacokinetics

It is metabolised to 5-FU by CYP2A6.[6][7]

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles.[§ 1]

FluoropyrimidineActivity_WP1601

go to article go to article go to article go to pathway article go to pathway article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to PubChem Compound go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to article go to pathway article go to pathway article go to article go to article go to article go to article go to article go to WikiPathways go to article go to article go to article go to article go to article go to article go to article go to article go to article

The interactive pathway map can be edited at WikiPathways: “FluoropyrimidineActivity_WP1601”.

Image result for tegafur

Image result for tegafur SYNTHESIS

 

 

Image result for tegafur SYNTHESIS

 

MASS SPECTRUM

STR2

1H NMR

str3 str4

IR

 

str5

 

13C NMR

STR2 str3

RAMAN

 

str4

 

STR2 str3

Synthesis

Image result for tegafur SYNTHESIS

Substances Referenced in Synthesis Path

CAS-RN Formula Chemical Name CAS Index Name
58138-78-6 C10H19FN2O2Si2 1,3-bis(trimethylsilyl)fluorouracil 2,4(1H,3H)-Pyrimidinedione, 5-fluoro-1,3-bis(trimethylsilyl)-
13369-70-5 C4H7ClO 2-chlorotetrahydrofuran Furan, 2-chlorotetrahydro-
1191-99-7 C4H6O 2,3-dihydrofuran Furan, 2,3-dihydro-
51-21-8 C4H3FN2O2 5-fluorouracil 2,4(1H,3H)-Pyrimidinedione, 5-fluoro-

Image result for tegafur SYNTHESIS

Image result for tegafur

ChemSpider 2D Image | Tegafur | C8H9FN2O3

 

SYN1

STR1

CN 106397416

SYN 2

STR2

 

Advanced Synthesis & Catalysis, 356(16), 3325-3330; 2014

PATENTS

CN 106397416

CN 104513230

CN 103159746

PATENT

CN 102285972

tegafur is a derivative of 5-fluorouracil, and in 1967, Hiller of the former Soviet Union synthesized tegafur (SA Hiller, RA Zhuk, M. Yu. Lidak, et al. Substituted Uracil [ P, British Patent, 1168391 (1969)). In 1974, it was listed in Japan. China was successfully developed by Shandong Jinan Pharmaceutical Factory in 1979. Its present origin is Shanghai and Shandong provinces and cities. The anti-cancer effect of tegafur is similar to that of 5-fluorouracil and is activated in vivo by 5-fluorouracil through liver activation. Unlike 5-fluorouracil, tegafur is fat-soluble, has good oral absorption, maintains high concentrations in the blood for a long time and easily passes through the blood-brain barrier. Clinical and animal experiments show that tegafur on gastrointestinal cancer, breast cancer is better, the role of rectal cancer than 5-fluorouracil good, less toxic than 5-fluorouracil. Teflon has a chemotherapy index of 2-fold for 5-fluorouracil and only 1 / 4-1 / 7 of toxicity. So the addition of fluoride is widely used in cancer patients with chemotherapy.

[0003] The first synthesis of tegafur is Hiller ([SA Hiller, RA Zhuk, Μ. Yu. Lidak, et al. Substituted Uracil [P], British Patent, 1168391 (1969)]. 5-fluorouracil or 2,4-bis (trimethylsilyl) -5-fluorouracil (Me3Si-Fu, 1) and 2-chlorotetrahydrofuran (Thf-Cl), and it is reported that this synthesis must be carried out at low temperature (- 20 to -40 ° C), because Thf-Cl is unstable, and excess Thf-Cl results in a decomposition reaction, thereby reducing the yield of Thf-Fu.

[0004] Earl and Townsend also prepared 1_ (tetrahydro-2-furyl) uracil using Thf-Cl and 2,4-bis (trimethylsilyl) uracil, and then using trifluoromethyl fluorite to product Fluorination. Mitsugi Yasurnoto reacts with the Friedel-Crafts catalyst in the presence of 2,4-bis (trimethylsilyl) -5-fluorouracil (Me3Si-U, 1) 2-acetoxytetrahydrofuran (Thf-OAc, 2) (Kazu Kigasawa et al., 2-tert-Butoxy), & lt; RTI ID = 0.0 & gt;, & lt; / RTI & gt; (K. Kigasawa, M. Hiiragi, K. ffakisaka, et al. J. Heterocyclic Chem. 1977, 14: 473-475) was reacted with 5-Fu at 155-160 ° C. Reported in the literature for the fluoride production route there are the following questions: 1, high energy consumption. In the traditional synthesis method, in order to obtain the product, the second step of the reaction needs to continue heating at 160 ° C for 5-6 hours, high energy consumption; 2, difficult to produce, low yield: 5-fluorouracil as a solid powder The reaction needs to be carried out at a high temperature (160 ° C), which requires the use of a high boiling solvent N, N-dimethylformamide (DMF). But it is difficult to completely remove the fluoride from the addition of fluoride, because DMF can form hydrogen bonds with the fluoride molecules, difficult to separate from each other; 3, in order to unreacted 5-fluorouracil and tegafur separation and recycling , The use of carcinogenic solvent chloroform as a extractant in the conventional method to separate 5-fluorouracil and tegafur. However, the main role of chloroform on the central nervous system, with anesthesia, the heart, liver, kidney damage; the environment is also harmful to the water can cause pollution. Therefore, the use of volatile solvent chloroform, even if the necessary measures to reduce its volatilization, will still cause harm to human health and the environment; 4, low yield. Since both NI and N-3 in the 5-fluorouracil molecule react with 2-tert-butoxytetrahydrofuran, the addition of tegafur is also the addition of 1,3-bis (tetrahydro-2-furyl) -5 – Fluorouracil. Therefore, the improvement of the traditional production process of tegafur is a significant and imminent task.

Example 1 (for example, the best reaction conditions):

Weigh 3.5 g (50 mmol) of 2,3-dihydrofuran, 1.9 g (50 mmol) of ethanol was added to a one-necked flask. To this was added 15 ml of tetrahydrofuran (THF). And then weighed 10. 0 mg CuCl2, microwave irradiation 250W at 25 ° C reaction 0. 6h. Cool to room temperature, add 1.95 g (15 mmol) of 5-fluorouracil (5-Fu), and microwave irradiation at 400 ° C for 100 ° C. After distilling off the low boiling solvent, the oil was obtained. Rinsed with ether to give a white solid which was recrystallized from anhydrous ethanol to give 1.34349 g of product. Melting point: 160-165 ° C. The yield was 75%.

[0011] Example 2

Weigh 3,5 g (50 mmol) of 2,3-dihydrofuran and 3.8 g (100 mmol) of ethanol were added to a single-necked flask. To this was added 15 ml of tetrahydrofuran (THF). And then weighed 5mg CuCl2, microwave irradiation 250W at 25 ° C for 0.6h. Cool to room temperature, add 1.95 g (15 mmol) of 5-fluorouracil (5-Fu), microwave irradiation 400W, reaction temperature 60 ° C under the reaction pool. The low boiling solvent was distilled off to give an oil. Rinsed with ether to give a white solid which was recrystallized from absolute ethanol to give the product 0. 46 g. Melting point: 160-165 ° C. The yield was 15%.

[0012] Example 3

Weigh 3.5 g (50 mmol) of 2,3-dihydrofuran, 1.9 g (50 mmol) of ethanol was added to a one-necked flask. To this was added 15 ml of tetrahydrofuran (THF). And then weighed 20mg CuCl2, microwave irradiation 250W at 25 ° C for 0.6h. Cooled to room temperature, add 1.95 g (15 to 01) 5-fluorouracil (5 call 11), microwave irradiation 2001, reaction temperature 1301: reaction lh. The low boiling solvent was distilled off to give an oil. Rinsed with ether to give a white solid which was recrystallized from anhydrous ethanol to give the product 1.81 g. Melting point: 160-165 ° C. The yield was 61%.

[0013] Example 4

Weigh 3.5 g (50 mmol) of 2,3-dihydrofuran and 19 g (500 mmol) of ethanol were added to a single-necked flask. To this was added 20 ml of tetrahydrofuran (THF). And then weighed IOmg CuCl2, microwave irradiation 250W at 25 ° C for 0.6h. Cooled to room temperature, add 1.95 g (15 to 01) 5-fluorouracil (5 call 11), microwave irradiation 2001, reaction temperature 1101: reaction lh. The low boiling solvent was distilled off to give an oil. Rinsed with ether to give a white solid which was recrystallized from absolute ethanol to give product U6g. Melting point: 160-165 ° C. The yield was 43%.

[0014] Example 5

Weigh 3,5 g (50 mmol) of 2,3-dihydrofuran and 9.5 g (250 mmol) of ethanol were added to a single-necked flask. To this was added 30 ml of tetrahydrofuran (THF). And then weighed IOmg CuCl2, microwave irradiation 250W at 25 ° C for 0.6h. Cooled to room temperature, add 1.95 g (15 to 01) 5-fluorouracil (5 call 11), microwave irradiation 6001, reaction temperature 1001: reaction lh. The low boiling solvent was distilled off to give an oil. Rinsed with ether to give a white solid which was recrystallized from absolute ethanol to give 1.15 g of product. Melting point: 160-165 ° C. The yield was 38%.

[0015] Example 6

Weigh 3.5 g (50 mmol) of 2,3-dihydrofuran, 1.9 g (50 mmol) of ethanol was added to a one-necked flask. To this was added 25 ml of tetrahydrofuran (THF). And then weighed 15mg CuCl2, microwave irradiation 250W at 25 ° C for 0.6h. Cooled to room temperature, add 1.95 g (15 to 01) 5-fluorouracil (5 call 11), microwave irradiation 5001, reaction temperature 1101: reaction lh. The low boiling solvent was distilled off to give an oil. Rinsed with ether to give a white solid which was recrystallized from anhydrous ethanol to give product 2.10 g. Melting point: 160-165 ° C. The yield was 70%.

 

Paper

A novel protocol for preparation of tegafur (a prodrug of 5-fluorouracil) is reported. The process involves the 1,8-diazabicycloundec-7-ene-mediated alkylation of 5-fluorouracil with 2-acetoxytetrahydrofuran at 90 °C, followed by treatment of the prepurified mixture of the alkylation products with aqueous ethanol at 70 °C. The yield of the two-step process is 72%.

Synthesis of Tegafur by the Alkylation of 5-Fluorouracil under the Lewis Acid and Metal Salt-Free Conditions

Aleksandra Zasada, Ewa Mironiuk-Puchalska, and Mariola Koszytkowska-Stawińska* 

Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warszawa, Poland

Org. Process Res. Dev., Article ASAP

DOI: 10.1021/acs.oprd.7b00103

*E-mail: mkoszyt@ch.pw.edu.pl.

http://pubs.acs.org/doi/abs/10.1021/acs.oprd.7b00103

http://pubs.acs.org/doi/suppl/10.1021/acs.oprd.7b00103/suppl_file/op7b00103_si_001.pdf

Tegafur, a prodrug of 5-fluorouracil (5-FUra), was discovered in 1967. The compound features high lipophilicity and water solubility compared to 5-FUra. Tegafur is used as a racemate since no significant difference in antitumor activity of enantiomers was observed.

The prodrug is gradually converted to 5-FUra by metabolism in the liver. Hence, a rapid breakdown of the released 5-FUra in the gastrointestinal tract is avoided.(6) In injectable form, tegafur provoked serious side effects, such as nausea, vomiting, or central nervous system disturbances.

The first generation of oral formulation of tegafur , UFT) is a combination of tegafur and uracil in a fixed molar ratio of 1:4, respectively. The uracil slows the metabolism of 5-FUra and reduces production of 2-fluoro-α-alanine as the toxic metabolite. UFT was approved in 50 countries worldwide excluding the USA.

S-1 is the next generation of oral formulation of tegafur.(7) It is a combination of tegafur, gimeracil, and oteracil in a fixed molar ratio of 1:0.4:1, respectively.

Gimeracil inhibits the enzyme responsible for the degradation of 5-FUra. Oteracil prevents the activation of 5-FUra in the gastrointestinal tract, thus minimizing the gastrointestinal toxicity of 5-FUra. S-1 is well-tolerated, but its safety can be influenced by schedule and dose, similar to any other cytotoxic agent. Since common side effects of S-1 can be managed with antidiarrheal and antiemetic medications, the drug can be administered in outpatient settings. S-1 was approved in Japan, China, Taiwan, Korea, and Singapore for the treatment of patients with gastric cancer.

In 2010, the Committee for Medicinal Products for Human Use (CHMP), a division of the European Medicines Agency (EMA), recommended the use of S-1 for the treatment of adults with advanced gastric cancer when given in a combination with cisplatin. Currently, S-1 has not been approved by the FDA in the United States.

There is a great interest in further examination of S-1 as an anticancer chemotherapeutic. Currently, 23 clinical trials with S-1 has been registered in National Institutes of Health (NIH). Combinations of S-1 and other anticancer agents have been employed in a majority of these trials.

5-Fluoro-1-(tetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione (Tegafur)

δH 1.89–2.10 (m, 3H), 2.38–2.45 (m, 1H), 3.97–4.01 (q-like m, 1H), 4.20–4.24 (dq-like m), 5.97–5.98 (m, 1H), 7.41 (d, 3JHF 6.1), 9.21 (bs, 1H, NH).

δC 23.82, 32.90, 70.26, 87.58, 123.63 (d, 2JCF 33.89), 140.33 (d, 1JCF 237.20) 148.66, 156.9 (d, 2JCF 26.81).

HRMS m/z calcd for C8H10N2O3F [M – H]+ 201.0670, found 201.0669.

Elemental analysis. Found C%, 46.42; H%, 4.45; N%, 13.35. Calcd for 3(C8H9N2O3F)·H2O: C%, 46.61; H%, 4.73; N%, 13.59.

PATENT CITATIONS
Cited Patent Filing date Publication date Applicant Title
CN85108855A * Nov 6, 1985 Sep 24, 1986 Central Chemical Research Institute Preparation of 1- (2-tetrahydrofuryl) -5-fluorouracil
GB1168391A * Title not available
JPS5452085A * Title not available
JPS5455581A * Title not available
JPS5459288A * Title not available
JPS52118479A * Title not available
JPS54103880A * Title not available
US4256885 * Dec 10, 1976 Mar 17, 1981 Mitsui Toatsu Kagaku Kabushiki Kaisha Process for the preparation of 1- (2-tetrahydrofuryl) -5-fluorouracil
US5075446 * Oct 12, 1990 Dec 24, 1991 Korea Advanced Institute Of Science & Technology Synthesis of tetrahydro-2-furylated pyrimidine derivatives
NON-PATENT CITATIONS
Reference
1 * KAZUO KIGASAWA, et al .: ” Studies on the Synthesis of Chemotherapeutics. Synthetic of 1- (2-Tetrahydrofuryl) -5-fluorouracil [Ftorafur] (Studies on the Syntheses of Heterocyclic Compound. Part 703) “, “J. HETEROCCLIC CHEM ., Vol. 14, 31 May 1977 (1977-05-31), pages 473 – 475

References

1

Matt P, van Zwieten-Boot B, Calvo Rojas G, Ter Hofstede H, Garcia-Carbonero R, Camarero J, Abadie E, Pignatti F (October 2011). “The European Medicines Agency review of Tegafur/Gimeracil/Oteracil (Teysuno™) for the treatment of advanced gastric cancer when given in combination with cisplatin: summary of the Scientific Assessment of the Committee for medicinal products for human use (CHMP).” (PDF). The Oncologist. 16 (10): 1451–1457. doi:10.1634/theoncologist.2011-0224. PMC 3228070Freely accessible. PMID 21963999.

  1. (1) Hirose, Takashi; Oncology Reports 2010, V24(2), P529-536 
  2. (2) Fujita, Ken-ichi; Cancer Science 2008, V99(5), P1049-1054 
  3. (3) Tahara, Makoto; Cancer Science 2011, V102(2), P419-424 
  4. (4) Chu, Quincy Siu-Chung; Clinical Cancer Research 2004, V10(15), P4913-4921 
  5. (5) Tominaga, Kazunari; Oncology 2004, V66(5), P358-364 
  6. (6) Peters, Godefridus J.; Clinical Cancer Research 2004, V10(12, Pt. 1), P4072-4076 
  7. (7) Kim, Woo Young; Cancer Science 2007, V98(10), P1604-1608 
  8.  Hillers, Solomon; Puti Sinteza i Izyskaniya Protivoopukholevykh Preparatov 1970, VNo. 3, P109-12 
  9.  Grishko, V. A.; Trudy Kazakhskogo Nauchno-Issledovatel’skogo Instituta Onkologii i Radiologii 1977, V12, P110-14 
  10. Ootsu, Koichiro; Takeda Kenkyushoho 1978, V37(3-4), P267-77 
  11.  “Drugs – Synonyms and Properties” data were obtained from Ashgate Publishing Co. (US) 
  12. Yabuuchi, Youichi; Oyo Yakuri 1971, V5(4), P569-84 
  13.  Germane, S.; Eksperimental’naya i Klinicheskaya Farmakoterapiya 1970, (1), P85-92 
  14.  JP 56046814 A 1981

MORE

  1. AIST: Integrated Spectral Database System of Organic Compounds. (Data were obtained from the National Institute of Advanced Industrial Science and Technology (Japan))
  2.  ACD-A: Sigma-Aldrich (Spectral data were obtained from Advanced Chemistry Development, Inc.)
  3. Nomura, Hiroaki; Chemical & Pharmaceutical Bulletin 1979, V27(4), P899-906 
  4. Sakurai, Kuniyoshi; Chemical & Pharmaceutical Bulletin 1978, V26(11), P3565-6 
  5. Miyashita, Osamu; Chemical & Pharmaceutical Bulletin 1981, V29(11), P3181-90
  6. Lukevics, E.; Zhurnal Obshchei Khimii 1981, V51(4), P827-34 
  7.  Needham, F.; Powder Diffraction 2006, V21(3), P245-247 
    1. Nomura, Hiroaki; Chemical & Pharmaceutical Bulletin 1979, V27(4), P899-906 
    2. Sakurai, Kuniyoshi; Chemical & Pharmaceutical Bulletin 1978, V26(11), P3565-6 
    3.  “Drugs – Synonyms and Properties” data were obtained from Ashgate Publishing Co. (US) 
    4.  Miyashita, Osamu; Chemical & Pharmaceutical Bulletin 1981, V29(11), P3181-90 
    5.  “PhysProp” data were obtained from Syracuse Research Corporation of Syracuse, New York (US)
    6.  Lukevics, E.; Zhurnal Obshchei Khimii 1981, V51(4), P827-34 
    7.  Lukevics, E.; Latvijas PSR Zinatnu Akademijas Vestis, Kimijas Serija 1982, (3), P317-20 
    8. Kruse, C. G.; Recueil des Travaux Chimiques des Pays-Bas 1979, V98(6), P371-80 
    9. Lukevics, E.; Latvijas PSR Zinatnu Akademijas Vestis, Kimijas Serija 1981, (4), P492-3
    10.  Kametani, Tetsuji; Heterocycles 1977, V6(5), P529-33
    11.  Kametani, Tetsuji; Journal of Heterocyclic Chemistry 1977, V14(3), P473-5 
    12. Hillers, S.; GB 1168391 1969 

 

Tegafur
Skeletal formula of tegafur
Ball-and-stick model of the tegafur molecule
Clinical data
AHFS/Drugs.com International Drug Names
Pregnancy
category
  • AU: D
Routes of
administration
Oral
ATC code
Legal status
Legal status
  • AU: S4 (Prescription only)
  • UK: POM (Prescription only)
Pharmacokinetic data
Biological half-life 3.9-11 hours
Identifiers
Synonyms 5-fluoro-1-(oxolan-2-yl)pyrimidine-2,4-dione
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEMBL
ECHA InfoCard 100.038.027
Chemical and physical data
Formula C8H9FN2O3
Molar mass 200.16 g/mol
3D model (Jmol)

///////////TEGAFUR

FC1=CN(C2CCCO2)C(=O)NC1=O

Share

KemInnTek Laboratories, helps you synthesize in mg to multi-kg scale.

 regulatory, SYNTHESIS, Uncategorized  Comments Off on KemInnTek Laboratories, helps you synthesize in mg to multi-kg scale.
May 122017
 

STR0

 

Image result for waitThe presentation will load below


KemInnTek Laboratories

Image result for presentation animation

 

Welcome to Keminntek Laboratories

Keminntek Laboratories is a Hyderabad (India) based Contract Research Organization in Pharmaceutical sector in specific Pharmaceutical Intermediates, Speciality Chemicals, Impurities and Active Pharmaceutical Ingredients. Promoters of Keminntek Laboratories are Young and Dynamic Technocrats and established with a vision to provide a best-in class pharmaceutical services. Keminntek Laboratories would be a value-added and innovative-in –approach business partner. It has a strong talent pool of qualified and experienced scientists drawn from the national and international institutes and industry. It has a capability to synthesize in mg to multi-kg scale.

About Us

Vision
Our vision is to build Keminntek Laboratories into a world class leading pharmaceutical service provider based on innovation while keeping health and prosperity in mind. Imperatively, we will continue our business with high standards of ethics in the interest of society and environment.Mission
We are committed towards improving people’s health through science and innovation. Our mission is to provide better access of the affordable medicines to the patients and positively impact prosperity.

Team

  • Promoters of this company are very well qualified and experienced personalities in Pharmaceutical sector

  • We have a team consisting

    • Ph.Ds from premier Indian Institutes and postdocs from abroad

    • M. Sc (Chemistry) with 2-12 years pharmaceutical industry experience

  • Our team expertise lies in process R&D of pharmaceutical intermediates, NCEs (Medicinal Chemistry) development, pharmaceutical impurities, and custom synthesis of specialty chemicals

http://keminnteklabs.com/

keminnteklabs@gmail.com

 

Kolupula Srinivas

Kolupula Srinivas

Co-Founder & Chief Scientific Officer at Keminntek Laboratories

logo
Visit

Plot No: 10/11, Road No: 5,
IDA Nacharam, Hyderabad,
India – 500076.
 +91 9515 053 169 / 68
 keminnteklabs@gmail.com
 keminnteklabs@gmail.com

 

Image result for presentation animation

//////////////KemInnTek Laboratories, srinivas kolupula, hyderabad, blog, cro, custom, synthesis

Share

Dnyaneshwar Gopane, Guest blogger, Novel diarylheptanoids as inhibitors of TNF-α production

 Uncategorized  Comments Off on Dnyaneshwar Gopane, Guest blogger, Novel diarylheptanoids as inhibitors of TNF-α production
May 062017
 

Novel diarylheptanoids as inhibitors of TNF-α production

Sameer Dhurua, Dilip Bhedia, Dnyaneshwar Gophanea, Kiran Hirbhagata, Vijaya Nadara, Dattatray Morea, Sapna Parikha, Roda Dalala, Lyle C. Fonsecaa, Firuza Kharasa, Prashant Y. Vadnala, Ram A. Vishwakarmaa, H. Sivaramakrishnana*

 

aDepartment of Medicinal Chemistry, Piramal Life Sciences Limited, 1 Nirlon Complex, Off Western Express Highway, Goregaon (E), Mumbai 400 063, India

bDepartment of Pharmacology, Piramal Life Sciences Limited, 1 Nirlon Complex, Off Western Express Highway, Goregaon (E), Mumbai 400 063, India 

Bioorg. Med. Chem. Lett. 21 (2011) 3784–3787

 

[Link: http://pubs.rsc.org/en/content/articlelanding/2013/cc/c2cc36389e#!divAbstract]

 

Graphical abstract

 

Synthesis and anti-inflammatory activity of novel diarylheptanoids [5-hydroxy-1-phenyl-7-(pyridin-3-yl)-heptan-3-ones and 1-phenyl-7-(pyridin-3-yl)hept-4-en-3-ones] as inhibitors of tumor necrosis factor-α (TNF-α production is described in the present article. The key reactions involve the formation of a β-hydroxyketone by the reaction of substituted 4-phenyl butan-2-ones with pyridine-3-carboxaldehyde in presence of LDA and the subsequent dehydration of the same to obtain the α,β-unsaturated ketones. Compounds 4i, 5b, 5d, and 5g significantly inhibit lipopolysaccharide (LPS)-induced TNF-α production from human peripheral blood mononuclear cells in a dose-dependent manner. Of note, the in vitro TNF-α inhibition potential of 5b and 5d is comparable to that of curcumin (a naturally occurring diarylheptanoid). Most importantly, oral administration of 4i, 5b, 5d, and 5g (each at 100 mg/kg) but not curcumin (at 100 mg/kg) significantly inhibits LPS-induced TNF-α production in BALB/c mice. Collectively, our findings suggest that these compounds may have potential therapeutic implications for TNF-α-mediated auto-immune/inflammatory disorders.

STR1 

 

 

Scheme 1. Synthetic scheme

 

 STR1

Table 1.

STR1

 

Table 2.

 

STR1

 

Highlights

 

  • Designed and synthesized a novel series of diarylheptanoids.
  • Compounds 4i, 5b, 5d, and 5g significantly inhibit in vitro TNF-α production from human cells.
  • Oral administration of these compounds significantly inhibits TNF-α production in mice.
  • These compounds may have potential therapeutic implications for TNF- α -mediated auto-immune/inflammatory diseases.

 

ABOUT GUEST BLOGGER

STR1

Dr. Dnyaneshwar B. Gophane, Ph. D.

Post doc fellow at Purdue university and university of Iceland

Email, gophane@gmail.com

 

Dr. Dnyaneshwar B. Gophane completed his B.Sc. (Chemistry) at Anand college of science, Pathardi (Ahmednagar, Maharashtra, India) in 2000 and M.Sc. (Organic Chemistry) at Department of Chemistry, University of Pune (India) in 2003. From 2003 to 2008, he worked in research and development departments of pharmaceutical companies like Dr. Reddy’s Laboratories and Nicholas Piramal India Limited, where he involved in synthesizing novel organic compounds for in vitro and in vivo screening and optimizing process for drug molecule syntheses. In 2008, Dnyaneshwar joined Prof. Sigurdsson’s laboratory for his Ph.D. study at the University of Iceland. His Ph.D. thesis mainly describes syntheses of nitroxide spin-labeled and fluorescent nucleosides and their incorporation into DNA and RNA using phosphoramidite chemistry. These modified nucleosides are useful probes for studying the structure and dynamics of nucleic acids by EPR and fluorescence spectroscopies. In 2014, after finishing his Ph.D., he worked as post doc fellow in same laboratory and mainly worked on spin labelling of RNA. At the university of Purdue in his second post doc, he was totally dedicated to syntheses of small molecules for anti-cancer activity and modification of cyclic dinucleotides for antibacterial activity. During his research experience, he has authored 8 international publications in peer reviewed journals like Chemical Communications, Chemistry- A European Journal, Journal of organic chemistry and Organic and Biomolecular Chemistry.

Share

GUEST BLOGGER, Dr Pravin Patil, A New Combination of Cyclohexylhydrazine and IBX for Oxidative Generation of Cyclohexyl Free Radical and Related Synthesis of Parvaquone

 Uncategorized  Comments Off on GUEST BLOGGER, Dr Pravin Patil, A New Combination of Cyclohexylhydrazine and IBX for Oxidative Generation of Cyclohexyl Free Radical and Related Synthesis of Parvaquone
Apr 292017
 

Image for unlabelled figure

As a GUEST BLOGGER, myself Dr Pravin Patil,  presenting my paper as below

A New Combination of Cyclohexylhydrazine and IBX for Oxidative Generation of Cyclohexyl Free Radical and Related Synthesis of Parvaquone

 Pravin C Patil*a and Krishnacharya G Akamanchi

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai-400 019.

aPresent address: Department of Chemistry, University of Louisville, Louisville, KY, USA.

*Corresponding Author: Email-pravinchem@gmail.com

Tetrahedron Letters 2017, 58 (19), 1883-1886 (Recently published)

[Link: http://www.sciencedirect.com/science/article/pii/S004040391730429X]

 

Graphical Abstract:

STR0

Abstract: The present paper demonstrate a single-step and straightforward synthesis of parvaquone through intermediacy of cyclohexyl radical generated from novel combination of cyclohexylhydrazine and o-iodoxybenzoic acid and subsequently trapped by 2-hydroxy-1,4-naphthoquinone. Formation of cyclohexyl free radical using this new combination was reaffirmed by cyclohexylation of readily available 2-amino-1, 4-naphthoquinone.

STR0

Scheme: Literature methods for synthesis of parvaquone

STR0

Scheme:  IBX mediated oxidative arylation towards synthesis of 1 (Parvaquone)

 

STR0

Scheme :  Cyclohexyl radical mediated postulated mechanism for formation of Parvaquone, 1

Synthesis of 2-cyclohexyl-3-hydroxy-1,4-naphthoquinone (parvaquone) (1): To a solution of 3 (1.0 g, 5.74 mmol) in acetonitrile (20 mL) was added IBX (3.80 g, 13.6 mmol) in one lot and stirred for 5 min at room temperature. To this was added dropwise a solution of 8 (0.78 g, 6.8 mmol) dissolved in 10 mL of acetonitrile over the course of 20 min. During the addition of 8 exotherm (up to 35 °C) was observed with evolution of nitrogen gas in the form of bubbles. Reaction progress was monitored by TLC (using mobile phase, hexane: ethyl acetate/5:95). After satisfactory TLC, water (20 mL) was added to the reaction mixture and acetonitrile was evaporated using rotary evaporator. To the residue obtained was added dichloromethane (30 mL). Oganic layer was separated and washed with saturated sodium bicarbonate solution followed by saturated solution of sodium sulphite. Separated organic layer was dried over anhydrous sodium sulphate and evaporated to obtain crude 1 which was further purified by column chromatography (mobile phase – hexane: ethyl acetate/5:95) to afford 1 as yellow solid, (0.88 g, 60% yield); mp 136-138 °C (lit.18 135-136°C); FT-IR (KBr): 3585, 3513, 3071, 2926, 2853, 1666, 1604, 1590 cm-1;

1H NMR (300 MHz; CDCl3): δ 8.10-8.06 (d, J = 12 Hz, 2H), 7.74-7.67 (d, J = 22 Hz, 2H, 7.45 (s, 1H, OH), 3.11-3.03 (t, J = 16 Hz, 1H), 1.99-1.34 (m, 10H); 13C NMR (75 MHz; CDCl3): δ 184.5, 181.9, 152.8, 135.1, 134.9, 132.7, 129.2, 127.9, 126.9, 125.9, 35.1, 29.2, 26.7, 25.9.

Highlights

  • New method of generating cyclohexyl radical by using IBX and cyclohexylhydrazine.
  • Parvaquone synthesized in 60% yield using metal, hazardous peroxide free conditions.
  • Described method has advantages of single step and mild reaction conditions.
  • The mechanism for cyclohexyl radical mediated synthesis of parvaquone is postulated.

 

please note………

Image result for A new combination of cyclohexylhydrazine and IBX for oxidative generation of cyclohexyl free radical and related synthesis of parvaquone

 

ABOUT GUEST BLOGGER

Dr. Pravin C. Patil

Dr. Pravin C. Patil

Postdoctoral Research Associate at University of Louisville

Email, pravinchem@gmail.com

    see…….http://oneorganichemistoneday.blogspot.in/2017/04/dr-pravin-patil.html

    Dr. Pravin C Patil completed his B.Sc. (Chemistry) at ASC College Chopda (Jalgaon, Maharashtra, India) in 2001 and M.Sc. (Organic Chemistry) at SSVPS’S Science College Dhule in North Maharashtra University (Jalgaon, Maharashtra, India) in year 2003. After M.Sc. degree he was accepted for summer internship training program at Bhabha Atomic Research Center (BARC, Mumbai) in the laboratory of Prof. Subrata Chattopadhyay in Bio-organic Division. In 2003, Dr. Pravin joined to API Pharmaceutical bulk drug company, RPG Life Science (Navi Mumbai, Maharashtra, India) and worked there for two years. In 2005, he enrolled into Ph.D. (Chemistry) program at Institute of Chemical Technology (ICT), Matunga, Mumbai, aharashtra, under the supervision of Prof. K. G. Akamanchi in the department of Pharmaceutical Sciences and Technology.

    After finishing Ph.D. in 2010, he joined to Pune (Maharashtra, India) based pharmaceutical industry, Lupin Research Park (LRP) in the department of process development. After spending two years at Lupin as a Research Scientist, he got an opportunity in June 2012 to pursue Postdoctoral studies at Hope College, Holland, MI, USA under the supervision of Prof. Moses Lee. During year 2012-13 he worked on total synthesis of achiral anticancer molecules Duocarmycin and its analogs. In 2014, he joined to Prof. Frederick Luzzio at the Department for Chemistry, University of Louisville, Louisville, KY, USA to pursue postdoctoral studies on NIH sponsored project “ Structure based design and synthesis of Peptidomimetics targeting P. gingivalis.

    During his research experience, he has authored 23 international publications in peer reviewed journals and inventor for 4 patents.

    //////////////Parvaquone, guest blogger, pravin patil

     

    Share

    Cholecystokinin-2/gastrin antagonists: 5-hydroxy-5-aryl-pyrrol-2-ones as anti-inflammatory analgesics for the treatment of inflammatory bowel disease

     Uncategorized  Comments Off on Cholecystokinin-2/gastrin antagonists: 5-hydroxy-5-aryl-pyrrol-2-ones as anti-inflammatory analgesics for the treatment of inflammatory bowel disease
    Mar 132017
     

    Cholecystokinin-2/gastrin antagonists: 5-hydroxy-5-aryl-pyrrol-2-ones as anti-inflammatory analgesics for the treatment of inflammatory bowel disease

    Med. Chem. Commun., 2017, Advance Article
    DOI: 10.1039/C6MD00707D, Research Article
    E. Lattmann, J. Sattayasai, R. Narayanan, N. Ngoc, D. Burrell, P. N. Balaram, T. Palizdar, P. Lattmann
    Arylated 5-hydroxy-pyrrol-2-ones were prepared in 2 synthetic steps from mucochloric acid and optimised as CCK2-selective ligands using a range of assays.

    Cholecystokinin-2/gastrin antagonists: 5-hydroxy-5-aryl-pyrrol-2-ones as anti-inflammatory analgesics for the treatment of inflammatory bowel disease

    *Corresponding authors
    aSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
    E-mail: e.lattmann@aston.ac.uk
    bDepartment of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002 Khon Kaen, Thailand
    cDepartment of Medicine, University of Tennessee Health Science Center, Memphis, USA
    dPNB Vesper Life Science PVT, Cochin, India
    Med. Chem. Commun., 2017, Advance Article

    DOI: 10.1039/C6MD00707D

    Arylated 5-hydroxy-pyrrol-2-ones were prepared in 2 synthetic steps from mucochloric acid and optimised as CCK2-selective ligands using radiolabelled binding assays. CCK antagonism was confirmed for the ligands in isolated tissue preparations. DSS (dextran sulfate sodium)-induced inflammation was analysed for derivative 7 and PNB-001 with L-365,260 as a standard. The IC50 of PNB-001 was determined to be 10 nM. Subsequent in vivo evaluation confirmed anti-inflammatory activity with respect to IBD assays. The best molecule, PNB-001, showed analgesic activity in the formalin test and in the hotplate assay, in which the analgesic effect of 1.5 mg kg−1 PNB-001 was equivalent to 40 mg kg−1 tramadol. The CCK2-selective antagonist PNB-001 protected rats against indomethacin-induced ulceration at similar doses. The GI protection activity was found to be more potent than that of the 10 mg kg−1 dose of prednisolone, which served as a standard.

    General Method: The relevant amine (2.5 times excess) was added to a solution of lactone A – E (0.7 mol) in ether (10 ml) and stirred on ice for 30 minutes, allowing to warm up to RT over the time. The resultant mixture was poured into 5 ml water and separated by separating funnel. The mixture was washed with water three times. The organic layer was dried over magnesium sulphate and the solvent was removed under vacuum. All compounds gave an oily solid which were passed through a column (80% ether, 20% petrol ether). The resulting fractions were dried from excess solvent under vacuum to yield crystals. 4-Chloro-1-cyclopropyl-5-hydroxy-5-phenyl-1,5-dihydro-pyrrol-2-one 1 Yield = 83 %; mp: 177-179 oC;
    MS (APCI(+)): 193/195 (M+1), 250/252 (M+) m/z
    1H NMR (CDCl3) 250 MHz:  = 7.41 (m, 5H), 6.09 (s, 1H), 3.50 (m, 1H), 2.18 (m, 1H), 0.95-1.04 & 0.38-0.69 (m, 4H);
    13C NMR (CDCl3) 167.4, 154.8, 135.2, 129.2, 128.8, 126.1, 122.2, 93.5, 22.6 , 3.8, 5.1;
    IR (KBr-disc)  max: 3416, 3260, 3105, 3011, 2363, 2338, 1671, 1602, 1490, 1450, 1409, 1369, 1256, 1144, 1032, 939, 833, 752, 702 cm-1 .
    /////////////////Cholecystokinin-2/gastrin antagonists, 5-hydroxy-5-aryl-pyrrol-2-ones,  anti-inflammatory analgesics, inflammatory bowel disease
    Holi Festival 2017
    Share

    tert-butyl(3aR,6aS)-5-oxohexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate

     Uncategorized  Comments Off on tert-butyl(3aR,6aS)-5-oxohexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate
    Feb 092017
     

    Abstract Image

     

    tert-butyl(3aR,6aS)-5-oxohexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate

    STR1 STR2 STR3 str4

    tert-Butyl (3aR,6aS)-5-Oxohexahydrocyclopenta[c]pyrrole-2(1H)-carboxylate (1)

    pure compound 1 (1.051 kg, 67%) as a white solid. Mp: 70–71 °C (uncorrected); [α]25D +0.40° (c 1.00 CHCl3); % purity: 98.5% (HPLC);
    1H NMR (CDCl3, 400 MHz) δ: 1.46 (s, 9H), 2.15 (dd, J1 = 4.8 Hz, J2 = 19.6 Hz, 2H), 2.47 (dd, J1 = 7.4 Hz, J2 = 19.6 Hz, 2H), 2.93 (bs, 2H), 3.16–3.28 (m, 2H), 3.65–3.67 (m, 2H).;
    13C NMR (CDCl3, 100 MHz) δ: 38.49, 39.36, 42.32, 50.51, 50.77, 79.49, 154.39, 217.65; IR (KBr): ν = 638, 771, 877, 1118, 1166, 1247, 1367, 1402, 1691, 1741, 2877, 2910, 2958, 2976, 3005 cm–1;
    TOFMS: [C12H19NO3 + H+]: calculated 226.1438, found 152.0663 (M-OtBu)+ (100%), 170.0755 (M-tBu + H)+ (40%), 248.1166 (M + Na)+ (5%).
    Anal. Calcd for C12H19NO3: C, 63.98; H, 8.50; N, 6.22. Found: C, 63.89; H, 8.27; N, 5.97.

    HPLC conditions were as follows for compound ; Agilent 1100 series, column: YMC J’SPHERE C18 (150 mm X 4.6 mm) 4µm with mobile phases A (0.05% TFA in water) and B (acetonitrile). Detection was at 210 nm, flow was set at 1.0 mL/min, and the temperature was 30 °C (Run time: 45 min). Gradient: 0 min, A = 90%, B = 10%; 5.0 min, A = 90%, B = 10%; 25 min, A = 0%, B = 100%; 30 min, A = 0%, B = 100%, 35 min, A = 90%, B = 10%; 45 min, A = 90%, B = 10%.

    Org. Process Res. Dev., Article ASAP
    DOI: 10.1021/acs.oprd.6b00399

    /////

    Share

    tert-Butyl 3a,4,7,7a-Tetrahydro-1H-isoindole-2(3H)-carboxylate

     Uncategorized  Comments Off on tert-Butyl 3a,4,7,7a-Tetrahydro-1H-isoindole-2(3H)-carboxylate
    Feb 042017
     

     

    STR1

    tert-Butyl 3a,4,7,7a-Tetrahydro-1H-isoindole-2(3H)-carboxylate

    STR1 STR2 STR3 str4 str5

    tert-Butyl 3a,4,7,7a-Tetrahydro-1H-isoindole-2(3H)-carboxylate 

     as a brown oil. % Purity: 93.72% (GC);
    1H NMR (CDCl3, 400 MHz) δ: 1.47 (s, 9H), 1.89–194 (m, 2H), 2.20–2.33 (m, 4H), 3.08 (dd, J1 = 6.2 Hz, J2= 10.2 Hz, 1H), 3.17 (dd, J1 = 4.8 Hz, J2 = 10.4 Hz, 1H), 3.37–3.43 (m, 2H), 5.65 (s, 2H);
    13C NMR (CDCl3, 100 MHz) δ: 24.63, 24.68, 28.49, 33.35, 34.23, 50.86, 50.92, 78.88, 124.19, 124.50, 155.22;
    IR (CHCl3): ν = 756, 1128, 1170, 1217, 1411, 1685, 2937, 2978, 3009 cm–1;
    TOFMS: [C13H21NO2 + H+]: calculated 224.1645, found 168.0958 (M-tBu + H)+ (100%), 246.1382 (M + Na)+ (5%).
    GC conditions were as follows for compound 4; Agilent GC-FID 7890A, column: ZB-5MSi (30 m X 0.32 mm, 0.25 µm) with injector temperature 250 ºC and detector temperature 280 ºC, diluent was Methanol, Oven temperature was at 70 ºC isocratic for 3 min. then raised up to 250 ºC @ 20 ºC/min then 15 min. hold.
    Org. Process Res. Dev., Article ASAP
    DOI: 10.1021/acs.oprd.6b00399
    ////////
    Share

    2,2′-(1-(tert-Butoxycarbonyl)pyrrolidine-3,4-diyl)diacetic Acid

     spectroscopy, SYNTHESIS, Uncategorized  Comments Off on 2,2′-(1-(tert-Butoxycarbonyl)pyrrolidine-3,4-diyl)diacetic Acid
    Feb 012017
     

     

    STR1

    2,2′-(1-(tert-Butoxycarbonyl)pyrrolidine-3,4-diyl)diacetic Acid

    STR1 STR2 STR3 str4 str5

    2,2′-(1-(tert-Butoxycarbonyl)pyrrolidine-3,4-diyl)diacetic Acid 

    as a white solid. Mp: 162–163 °C, % purity: 94.09% (HPLC);
    1H NMR (DMSO-d6, 400 MHz) δ: 1.38 (s, 9H), 2.10–2.18 (m, 2H), 2.28–2.32 (m, 2H), 2.49–2.50 (m, 2H, merged with DMSO peak), 2.97–3.03 (m, 2H), 3.33–3.40 (m, 2H), 12.23 (bs, 2H); 1H NMR (CD3OD, 400 MHz) δ: 1.46 (s, 9H), 2.26 (ddd, J1 = 2.8 Hz, J2 = 9.2 Hz, J3 = 16.0 Hz, 2H), 2.43 (dd, J1 = 5.2 Hz, J2 = 16.0 Hz, 2H), 2.69 (m, 2H), 3.16 (dd, J1 = 5.2 Hz, J2 = 10.8 Hz, 2H), 3.49–3.54 (m, 2H);
    13C NMR (DMSO-d6, 100 MHz) δ: 28.49, 32.97, 36.49, 37.31, 50.10, 50.20, 78.67, 154.05, 173.96;
    IR (KBr): ν = 871, 933, 1143, 1166, 1292, 1411, 1689, 1708, 2881, 2929, 2980, 3001 cm–1;
    TOFMS: [C13H21NO6 – H+]: calculated 286.1296, found 286.1031(100%).
    HPLC conditions were as follows for compound ; Agilent 1100 series, column: YMC J’SPHERE C18 (150 mm X 4.6 mm) 4µm with mobile phases A (0.05% TFA in water) and B (acetonitrile). Detection was at 210 nm, flow was set at 1.0 mL/min, and the temperature was 30 °C (Run time: 45 min). Gradient: 0 min, A = 90%, B = 10%; 5.0 min, A = 90%, B = 10%; 25 min, A = 0%, B = 100%; 30 min, A = 0%, B = 100%, 35 min, A = 90%, B = 10%; 45 min, A = 90%, B = 10%.
    Org. Process Res. Dev., Article ASAP
    DOI: 10.1021/acs.oprd.6b00399
    /////////
    Share
    Follow

    Get every new post on this blog delivered to your Inbox.

    Join other followers: