AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

Continuous Flow Magnesiation of Functionalized Heterocycles and Acrylates with TMPMgCl⋅LiCl†

 SYNTHESIS  Comments Off on Continuous Flow Magnesiation of Functionalized Heterocycles and Acrylates with TMPMgCl⋅LiCl†
May 072016
 

 

 

Knochel’s group in Munich have recently disclosed how a variety of functionalised heterocycles and sensitive acrylates can be rapidly magnesiated and subsequently quenched with an electrophile under continuous flow-through;conditions using a Uniqsis static mixer/reactor chip.

A key advantage is that, in contrast to typical batch procedures, these reactions required non-cryogenic conditions (typically 25C); moreover the procedure could be quickly scaled to 45 mmol without modification of the reaction conditions.

Metalations under flow-through conditions permited magnesiations that did not afford the desired product under batch conditions and acylates could be magnesiated and quenched to afford products with high stereoselectivities without concomitant polymerisation.

Continuous Flow Magnesiation of Functionalized Heterocycles and Acrylates with TMPMgCl⋅LiCl

A flow procedure for the metalation of functionalized heterocycles (pyridines, pyrimidines, thiophenes, and thiazoles) and various acrylates using the strong, non-nucleophilic base TMPMgCl⋅LiCl is reported. The flow conditions allow the magnesiations to be performed under more convenient conditions than the comparable batch reactions, which often require cryogenic temperatures and long reaction times. Moreover, the flow reactions are directly scalable without further optimization. Metalation under flow conditions also allows magnesiations that did not produce the desired products under batch conditions, such as the magnesiation of sensitive acrylic derivatives. The magnesiated species are subsequently quenched with various electrophiles, thereby introducing a broad range of functionalities.

see

http://onlinelibrary.wiley.com/doi/10.1002/anie.201404221/full

str1

str1

str1

 

str1

/////Continuous Flow Magnesiation,  Functionalized Heterocycles,  Acrylates ,  TMPMgCl⋅LiCl

Share

Potential of Homogeneous Pd Catalyst Separation by Ceramic Membranes. Application to Downstream and Continuous Flow Processes

 SYNTHESIS  Comments Off on Potential of Homogeneous Pd Catalyst Separation by Ceramic Membranes. Application to Downstream and Continuous Flow Processes
May 072016
 
Abstract Image

Successful chemical production of molecules while simultaneously reducing the environmental impact of the process relies not only on more efficient reactions but also on developments in reactor and separation technology. Recent decades have also witnessed a significant growth in industrial interest in solvent-based separations using membranes stable to organic solvents. The incorporation of membranes into a chemical process can be via a simple downstream processing method or an integrated reaction membrane method. This paper deals with homogeneous organometallic catalyzed reactions and probes the separation of a number of readily available palladium complexes from reaction mixtures with highly stable ceramic membranes. A number of different processing methods, namely, online, at-line, and off-line are compared and contrasted. A high rejection of Palladium species and consequently very low palladium contamination of reaction products with a single organic solvent nanofiltration (OSN) step has been demonstrated.

Potential of Homogeneous Pd Catalyst Separation by Ceramic Membranes. Application to Downstream and Continuous Flow Processes

VITO (Flemish Institute for Technological Research), Separation and Conversion Technology, Boeretang 200, B-2400 Mol, Belgium
Organic Synthesis, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.5b00418

http://pubs.acs.org/doi/abs/10.1021/acs.oprd.5b00418

 

 

 

//////Potential, Homogeneous Pd Catalyst Separation, Ceramic Membranes, Application, Downstream, Continuous Flow Processes

Share

Development of a Safe and Robust Process for the Large-Scale Preparation of a Vinyl Bromide from a Ketone Using a (PhO)3P/Br2-Derived Reagent

 SYNTHESIS  Comments Off on Development of a Safe and Robust Process for the Large-Scale Preparation of a Vinyl Bromide from a Ketone Using a (PhO)3P/Br2-Derived Reagent
May 072016
 
Abstract Image

The large-scale synthesis of ethyl 4-bromocyclohex-3-enecarboxyalate, using a mild brominating reagent derived from triphenyl phosphite and bromine, is reported. The development and comparison of both continuous and batch processes are described.

A modified addition sequence was developed based on the knowledge garnered from flow-processing, resulting in a safe and efficient process for the in situ generation of the unstable active reagent and its immediate reaction with the ketone in a batch mode process.

Development of a Safe and Robust Process for the Large-Scale Preparation of a Vinyl Bromide from a Ketone Using a (PhO)3P/Br2-Derived Reagent

Chemical and Synthetic Development, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore-560099, India
Chemical and Synthetic Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.6b00100

http://pubs.acs.org/doi/abs/10.1021/acs.oprd.6b00100

 

Authors

Nachiket Likhite

Nachiket Likhite

Senior Research Investigator at Bristol-Myers Squibb Biocon R&D Center (BBRC)

KIRAN SHAW…OWNER

/////Development, Safe and Robust Process, Large-Scale Preparation,  Vinyl Bromide,  Ketone,  (PhO)3P/Br2-Derived Reagent

Share

Synthesis of pyrrolidinone derivatives from aniline, an aldehyde and diethyl acetylenedicarboxylate in an ethanolic citric acid solution under ultrasound irradiation

 spectroscopy, SYNTHESIS  Comments Off on Synthesis of pyrrolidinone derivatives from aniline, an aldehyde and diethyl acetylenedicarboxylate in an ethanolic citric acid solution under ultrasound irradiation
Mar 312016
 

Green Chem., 2016, Advance Article
DOI: 10.1039/C6GC00157B, Paper
Hamideh Ahankar, Ali Ramazani, Katarzyna Slepokura, Tadeusz Lis, Sang Woo Joo
In this study, we reported a simple and efficient route for the one-pot sonochemical synthesis of substituted 3-pyrrolin-2-ones by citric acid as an additive.

Synthesis of pyrrolidinone derivatives from aniline, an aldehyde and diethyl acetylenedicarboxylate in an ethanolic citric acid solution under ultrasound irradiation

The ultrasound-promoted one-pot multicomponent synthesis of substituted 3-pyrrolin-2-ones using citric acid as a green additive in a green solvent is reported. Citric acid catalyzed the reaction efficiently without the need for any other harmful organic reagents. Clean reaction profile, easy work-up procedure, excellent yields and short reaction times are some remarkable features of this method. The utilization of ultrasound irradiation makes this method potentially very useful, fast, clean and convenient.

Synthesis of pyrrolidinone derivatives from aniline, an aldehyde and diethyl acetylenedicarboxylate in an ethanolic citric acid solution under ultrasound irradiation

*Corresponding authors
aDepartment of Chemistry, University of Zanjan, P O Box 45195-313, Zanjan, Iran
E-mail: aliramazani@gmail.com
bFaculty of Chemistry, University of Wrocław, 14 Joliot-Curie St., 50-383 Wrocław, Poland
cSchool of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea
E-mail: swjoo@yu.ac.kr
Green Chem., 2016, Advance Article

http://pubs.rsc.org/en/Content/ArticleLanding/2016/GC/C6GC00157B?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract
DOI: 10.1039/C6GC00157B

Ethyl 4-hydroxy-5-oxo-1,2-diphenyl-2,5-dihydro-1H-pyrrole-3-carboxylate
ethyl 4-hydroxy-5-oxo-1,2-diphenyl-2,5-dihydro-1H-pyrrole-3-carboxylate
str1
str1

 

str1

str1

 

 

 

//////Synthesis, pyrrolidinone derivatives, aniline,  aldehyde,  diethyl acetylenedicarboxylate,  ethanolic citric acid solution,  ultrasound irradiation

Share

Understanding Oxadiazolothiazinone Biological Properties: Negative Inotropic Activity versus Cytochrome P450-Mediated Metabolism

 spectroscopy, SYNTHESIS  Comments Off on Understanding Oxadiazolothiazinone Biological Properties: Negative Inotropic Activity versus Cytochrome P450-Mediated Metabolism
Mar 242016
 
Abstract Image

We present a series of oxadiazolothiazinones, selective inotropic agents on isolated cardiac tissues, devoid of chronotropy and vasorelaxant activity. Functional and binding data for the precursor of the series (compound 1) let us hypothesize LTCC blocking activity and the existence of a recognition site specific for this scaffold. We synthesized and tested 22 new derivatives: introducing a para-methoxyphenyl at C-8 led to compound 12 (EC50 = 0.022 μM), twice as potent as its para-bromo analogue (1). For 10 analogues, we extended the characterization of the biological properties by including the assessment of metabolic stability in human liver microsomes and cytochrome P450 inhibition potential. We observed that the methoxy group led to active compounds with low metabolic stability and high CYP inhibition, whereas the protective effect of bromine resulted in enhanced metabolic stability and reduced CYP inhibition. Thus, we identified two para-bromo benzothiazino-analogues as candidates for further studies.

str1

8-ethoxy-8-(4-methoxyphenyl)-5-methyl-8H-[1,2,4]oxadiazolo[3,4-c][1,4]thiazin-3-one

str1

Understanding Oxadiazolothiazinone Biological Properties: Negative Inotropic Activity versus Cytochrome P450-Mediated Metabolism

Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 10, 06123 Perugia, Italy
Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
§ Dipartimento di Farmacia, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
# Dipartimento di Neuroscienze, Area del Farmaco e Salute del Bambino (NEUROFARBA), Viale Pieraccini 6, 50139 Firenze, Italy
Dipartimento di Chimica ‘G. Ciamician’, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
J. Med. Chem., Article ASAP
DOI: 10.1021/acs.jmedchem.6b00030
Publication Date (Web): March 10, 2016
Copyright © 2016 American Chemical Society
*Phone: +39 75 5855550. Fax: +39 75 45646. E-mail: emanuele@chemiome.chm.unipg.it.

http://pubs.acs.org/doi/full/10.1021/acs.jmedchem.6b00030

/////////Cytochrome P450-Mediated Metabolism, Negative Inotropic Activity

 

CCOC2(c1ccc(OC)cc1)SC=C(C)n3c2noc3=O

Share

Palladium-Catalyzed Aerobic Oxidative Coupling of o-Xylene in Flow: A Safe and Scalable Protocol for Cross-Dehydrogenative Coupling

 PROCESS, SYNTHESIS  Comments Off on Palladium-Catalyzed Aerobic Oxidative Coupling of o-Xylene in Flow: A Safe and Scalable Protocol for Cross-Dehydrogenative Coupling
Mar 232016
 

 

Abstract Image

Herein, the first continuous cross-dehydrogenative homocoupling of an unactivated arene using oxygen as sole oxidant is reported. Employing microreactor technology which enables the use of elevated temperatures and pressures leads to a boost of the catalytic reaction. Hence, a major reduction in reaction time is achieved. Due to the significance as precursor for MOFs as well as high-tech and high-value polymers, the study focused on the production of 3,4,3′,4′-tetramethyl-biphenyl.

Palladium-Catalyzed Aerobic Oxidative Coupling of o-Xylene in Flow: A Safe and Scalable Protocol for Cross-Dehydrogenative Coupling

Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.6b00044
Publication Date (Web): March 10, 2016
Copyright © 2016 American Chemical Society
*E-mail: t.noel@tue.nl.

////Palladium-Catalyzed Aerobic Oxidative Coupling,  o-Xylene, Flow, Safe and Scalable Protocol,  Cross-Dehydrogenative Coupling

 

PICS

Cross-dehydrogenative coupling reactions. : The electron is a …

www.nature.com

Cross-dehydrogenative coupling reactions.

Enhancing the usefulness of cross dehydrogenative coupling …

pubs.rsc.org

Cross dehydrogenative coupling (CDC) reactions with different protecting group strategies.
Share

Phytochemical compounds or their synthetic counterparts? A detailed comparison of the quantitative environmental assessment for the synthesis and extraction of curcumin

 PROCESS, spectroscopy, SYNTHESIS  Comments Off on Phytochemical compounds or their synthetic counterparts? A detailed comparison of the quantitative environmental assessment for the synthesis and extraction of curcumin
Mar 212016
 

 

Green Chem., 2016, 18,1807-1818
DOI: 10.1039/C6GC00090H, Paper
Elisabetta Zerazion, Roberto Rosa, Erika Ferrari, Paolo Veronesi, Cristina Leonelli, Monica Saladini, Anna Maria Ferrari
LCA of the synthesis of curcumin and its direct conventional and microwave assisted extractions fromCurcuma longa L. were compared.

Phytochemical compounds or their synthetic counterparts? A detailed comparison of the quantitative environmental assessment for the synthesis and extraction of curcumin

Phytochemical compounds or their synthetic counterparts? A detailed comparison of the quantitative environmental assessment for the synthesis and extraction of curcumin

*Corresponding authors
aDipartimento di Scienze e Metodi dell’Ingegneria, Università degli Studi di Modena e Reggio Emilia, via Amendola 2, 42100 Reggio Emilia, Italy
bDipartimento di Ingegneria “Enzo Ferrari”, Università degli Studi di Modena e Reggio Emilia, via Pietro Vivarelli 10, 41125 Modena, Italy
E-mail: roberto.rosa@unimore.it
Fax: +390592056243
Tel: +390592056224
c
Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy
Green Chem., 2016,18, 1807-1818

DOI: 10.1039/C6GC00090H

Natural compounds represent an extremely wide category to be exploited, in order to develop new pharmaceutical strategies. In this framework, the number of in vitro, in vivo and clinical trials investigating the therapeutic potential of curcumin is exponentially increasing, due to its antioxidant, anti-inflammatory and anticancer properties. The possibility to obtain this molecule by both chemical synthesis and extraction from natural sources makes the environmental assessments of these alternative production processes of paramount importance from a green chemistry perspective, with the aim, for both industries and academia, to pursue a more sustainable development. The present work reports detailed and quantitative environmental assessments of three different curcumin production strategies: synthesis, conventional Soxhlet-based extraction (CE) and microwave-assisted extraction (MAE). The chemical synthesis of curcumin, as recently optimized by the authors, has been firstly evaluated by using the EATOS software followed by a complete “cradle to the grave” study, realized by applying the Life Cycle Assessment (LCA) methodology. The life cycles of CE and MAE were then similarly assessed, considering also the cultivation of Curcuma longa L., the production of the dried rhizomes as well as their commercialization, in order to firstly investigate the widely claimed green character of MAE with respect to more conventional extraction procedures. Secondly, the results related to the two different extraction strategies were compared to those obtained by the chemical synthesis of curcumin, with the aim to determine its greenest preparation procedure among those investigated. This work represents the first example of an environmental assessment comparison between different production strategies of curcumin, thus smoothing the way towards the highly desirable establishment of environmentally friendly rankings, comprising all the existing alternatives to the chemical synthesis of a target chemical compound.

/////Phytochemical compounds,  synthesis,  extraction, curcumin

Share

A pot-economical and diastereoselective synthesis involving catalyst-free click reaction for fused-triazolobenzodiazepines

 PROCESS, SYNTHESIS  Comments Off on A pot-economical and diastereoselective synthesis involving catalyst-free click reaction for fused-triazolobenzodiazepines
Mar 212016
 

 

Green Chem., 2016, Advance Article
DOI: 10.1039/C6GC00497K, Communication
Xiaofeng Zhang, Sanjun Zhi, Wei Wang, Shuai Liu, Jerry P. Jasinski, Wei Zhang
A pot-economical synthesis involving two [3 + 2] cycloadditions for diastereoselective synthesis of novel triazolobenzodiazepine-containing polycyclic compounds

http://pubs.rsc.org/en/Content/ArticleLanding/2016/GC/C6GC00497K?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract

A pot-economical and diastereoselective synthesis involving catalyst-free click reaction for fused-triazolobenzodiazepines

 *Corresponding authors
aCentre for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, USA
E-mail: wei2.zhang@umb.edu
bJiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian, PR China
cSchool of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, PR China
dDepartment of Chemistry, Keene State College, Keene, USA
Green Chem., 2016, Advance Article

DOI: 10.1039/C6GC00497K

A pot-economical synthesis involving sequential [3 + 2] cycloadditions of an azomethine ylide and an azide–alkyne (click reaction) has been developed for diastereoselective synthesis of novel triazolobenzodiazepine-containing polycyclic compounds. A new example of catalyst-free click chemistry of non-strained alkynes is also disclosed

str1

 

str1

 

str1

 

str1

 

str1

 

str1

/////A pot-economical, diastereoselective synthesis, catalyst-free click reaction, fused-triazolobenzodiazepines

Share

An Improved Process for the Preparation of Tenofovir Disoproxil Fumarate

 MANUFACTURING, PROCESS, SYNTHESIS  Comments Off on An Improved Process for the Preparation of Tenofovir Disoproxil Fumarate
Mar 152016
 

 

VIREAD® (tenofovir disoproxil fumarate) Structural Formula Illustration

Tenofovir Disoproxil Fumarate

For full details see end of page

 

PAPER

 

 

Abstract Image

The current three-step manufacturing route for the preparation of tenofovir disoproxil fumarate (1) was assessed and optimized leading to a higher yielding, simpler, and greener process. Key improvements in the process route include the refinement of the second stage through the replacement of the problematic magnesium tert-butoxide (MTB) with a 1:1 ratio of a Grignard reagent and tert-butanol. The development of a virtually solvent-free approach and the establishment of a workup and purification protocol which allows the isolation of a pure diethyl phosphonate ester (8) was achieved

 

str1

 

 

see………….http://pubs.acs.org/doi/abs/10.1021/acs.oprd.5b00364

An Improved Process for the Preparation of Tenofovir Disoproxil Fumarate

Department of Chemistry, Natural and Agricultural Sciences, University of Pretoria, 2 Lynnwood Road, Hatfield, 0002, Gauteng, South Africa
Department of Engineering and Technology Management, University of Pretoria, Pretoria, South Africa
§ Pharmaceutical Manufacturing Technology Centre, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
iThemba Pharmaceuticals, Modderfontein, 1645, Gauteng South Africa
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.5b00364
Publication Date (Web): March 04, 2016
Copyright © 2016 American Chemical Society

University of Pretoria

Department of Chemistry, Natural and Agricultural Sciences, University of Pretoria, 2 Lynnwood Road, Hatfield, 0002, Gauteng, South Africa

Map of Department of Chemistry, Natural and Agricultural Sciences, University of Pretoria, 2 Lynnwood Road, Hatfield, 0002, Gauteng, South Africa

///////

Tenofovir Disoproxil Fumarate

5-[[(1R)-2-(6-Amino-9H-purin-9-yl)-1-methylethoxy]methyl]-2,4,6,8-tetraoxa-5-phosphanonanedioic Acid 1,9-Bis(1-methylethyl) Ester 5-Oxide (2E)-2-Butenedioate; GS 4331-05; PMPA Prodrug; Tenofovir DF; Virea; Viread;

GILEAD-4331-300

201341-05-1 – free base, (Tenofovir Disoproxil

 fumarate 202138-50-9
113-115°C (dec.)
CAS No.: 202138-50-9
Name: Tenofovir disoproxil fumarate
Molecular Structure:
Molecular Structure of 202138-50-9 (Tenofovir disoproxil fumarate)
Formula: C19H30N5O10P.C4H4O4
Molecular Weight: 635.51
Synonyms: TDF;PMPA prodrug;Tenofovir Disoproxil Fumarate [USAN];9-((R)-2-((Bis(((isopropoxycarbonyl)oxy)methoxy)phosphinyl)methoxy)propyl)adenine, fumarate;201341-05-1;Bis(NeopentylOC)PMPA;Viread;GS 4331-05 (*1:1 Fumarate salt*);Viread (*1:1 Fumarate salt*);Truvada;Tenofovir DF;[[(2R)-1-(6-aminopurin-9-yl)propan-2-yl]oxymethyl-(propan-2-yloxycarbonyloxymethoxy)phosphoryl]oxymethyl propan-2-yl carbonate;
Usage
tyrosinase inhibitor used for skin lightening and anti-melasma
Usage
An acyclic phosphonate nucleotide analog and selective HIV-1 RT inhibitor
Usage
Acyclic phosphonate nucleotide analogue; reverse transcriptase inhibitor. Used as an anti-HIV agent. Antiviral.

 

Tenofovir disoproxil is an antiretroviral medication used to prevent and treat HIV/AIDS and to treat chronic hepatitis B.[1] The active substance is tenofovir, while tenofovir disoproxil is a prodrug that is used because of its better absorption in the gut.

The drug is on the World Health Organization’s List of Essential Medicines, the most important medications needed in a basic health system.[2] It is marketed by Gilead Sciences under the trade name Viread (as the fumarate, TDF).[3] As of 2015 the cost for a typical month of medication in the United States is more than 200 USD.[4]

http://www.intmedpress.com/journals/avt/iframePopup_fig.cfm?img=c32b4107-6d95-47c7-bb57-45390ba123b1

Medical uses

  • HIV-1 infection: Tenofovir is indicated in combination with other antiretroviral agents for the treatment of HIV-1 infection in adults and pediatric patients 2 years of age and older.[5] This indication is based on analyses of plasma HIV-1 RNA levels and CD4 cell counts in controlled studies of tenofovir in treatment-naive and treatment-experienced adults.
  • Tenofovir is indicated for the treatment of chronic hepatitis B in adults and pediatric patients 12 years of age and older.[5][6]

HIV risk reduction

A Cochrane review examined the use of tenofovir for prevention of HIV before exposure. It found that both tenofovir alone and the tenofovir/emtricitabine combination decreased the risk of contracting HIV.[7]

The U. S. Centers for Disease Control and Prevention (CDC) conducted a study in partnership with the Thailand Ministry of Public Health to ascertain the effectiveness of providing people who inject drugs illicitly with daily doses of the antiretroviral drug tenofovir as a prevention measure. The results of the study were released in mid-June 2013 and revealed a 48.9%-reduced incidence of the virus among the group of subjects who received the drug, in comparison to the control group who received a placebo. The principal investigator of the study stated: “We now know that pre-exposure prophylaxis can be a potentially vital option for HIV prevention in people at very high risk for infection, whether through sexual transmission or injecting drug use.”[8]

Adverse effects

The most common side effects associated with tenofovir include nausea, vomiting, diarrhea, and asthenia. Less frequent side effects include hepatotoxicity, abdominal pain, and flatulence.[9] Tenofovir has also been implicated in causing renal toxicity, particularly at elevated concentrations.[10]

Tenofovir can cause acute renal failure, Fanconi syndrome, proteinuria, or tubular necrosis.[citation needed] These side effects are due to accumulation of the drug in proximal tubules.[citation needed] Tenofovir can interact with didanosine by increasing didanosine’s concentration.[citation needed] It also decreases the concentration of atazanavir sulfate.[citation needed]

Mechanism of action

Tenofovir is a defective adenosine nucleotide that selectively interferes with the action of reverse transcriptase, but only weakly interferes with mammalian DNA polymerases α, β, and mitochondrial DNA polymerase γ.[11] Tenofovir prevents the formation of the 5′ to 3′ phosphodiester linkage essential for DNA chain elongation. A phosphodiester bond cannot be formed because the tenofovir molecule lacks an —OH group on the 3′ carbon of its deoxyribose sugar.[11] Once incorporated into a growing DNA strand, tenofovir causes premature termination of DNA transcription. The drug is classified as a nucleotide analogue reverse transcriptase inhibitor (NRTI), that inhibits reverse transcriptase.[11] Reverse transcriptase is a crucial viral enzyme in retroviruses such as human immunodeficiency virus (HIV) and in hepatitis B virus infections.[5]

History

Tenofovir was initially synthesized by Antonín Holý at the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic in Prague. The patent[12] filed by Holý in 1984 makes no mention of the potential use of the compound for the treatment of HIV infection, which had only been discovered one year earlier.

In 1985, De Clercq and Holý described the activity of PMPA against HIV in cell culture.[13] Shortly thereafter, a collaboration with the biotechnology company Gilead Sciences led to the investigation of PMPA’s potential as a treatment for HIV infected patients. In 1997 researchers from Gilead and the University of California, San Francisco demonstrated that tenofovir exhibits anti-HIV effects in humans when dosed by subcutaneous injection.[14]

The initial form of tenofovir used in these studies had limited potential for widespread use because it was not absorbed when administered orally. A medicinal chemistry team at Gilead developed a modified version of tenofovir, tenofovir disoproxil.[15] This version of tenofovir is often referred to simply as “tenofovir”. In this version of the drug, the two negative charges of the tenofovir phosphonic acid group are masked, thus enhancing oral absorption.

Tenofovir disoproxil was approved by the U.S. FDA on October 26, 2001, for the treatment of HIV, and on August 11, 2008, for the treatment of chronic hepatitis B.[16][17]

Drug forms

Tenofovir disoproxil is a prodrug form of tenofovir. It is also marketed under the brand name Reviro by Dr. Reddy’s Laboratories. Tenofovir is also available in a fixed-dose combination with emtricitabine in a product with the brand name Truvada for once-a-day dosing. Efavirenz/emtricitabine/tenofovir disoproxil (brand name Atripla) — a fixed-dose triple combination of tenofovir, emtricitabine, and efavirenz, was approved by the FDA on 12 July 2006 and is now available, providing a single daily dose for the treatment of HIV.

Therapeutic drug monitoring

Tenofovir may be measured in plasma by liquid chromatography. Such testing is useful for monitoring therapy and to prevent drug accumulation and toxicity in people with kidney or liver problems.[18][19][20]

PATENT

http://www.google.com/patents/EP2545063A2?cl=en

Tenofovir Disoproxil is chemically known as 9-[-2-(R)-[[bis [[(isopropoxycarbonyl) oxy]methoxy] phosphinoyl]methoxy]propyl]-adenine, having the following structural formula-I.

Formula-I

Tenofovir is a highly potent antiviral agent, particularly for the therapy or prophylaxis of retroviral infections and belongs to a class of drugs called Nucleotide Reverse Transcriptase Inhibitors (NRTI) which blocks reverse transcriptase an enzyme crucial to viral production in HIV-infected people.

Tenofovir Disoproxil and its pharmaceutically acceptable salts were first disclosed in US 5,922,695. This patent discloses the preparation of Tenofovir Disoproxil by the esterification of Tenofovir with chloromethyl isopropyl carbonate using l-methyl-2- pyrrolidinone and triethylamine. In this patent Tenofovir Disoproxil is converted into its Fumarate salt without isolation. PCT Publication WO 2008007392 discloses process for the preparation of Tenofovir Disoproxil fumarate, wherein the isolated crystalline Tenofovir Disoproxil is converted into fumarate salt.

Tenofovir Disoproxil processes in the prior art are similar to process disclosed in product patent US 5,922,695. According to the prior art processes, Tenofovir Disoproxil fumarate obtained is having low yields and also show the presence of impurities such as dimers.

scheme- 1.

Tenofovir disoproxil chloromethyl isopropyl carbonate

Tenofovir disoproxil fumarate

Example 1 : Process for the preparation of Tenofovir Disoproxil fumarate

Toluene (500 ml) was added to the Tenofovir (100 gm) and stirred at room temperature. To this triethylamine (66.31 gm) was added, temperature was raised to 90° C and water was collected by azeotropic distillation at 110°C. Toluene was completely distilled under vacuum at same temperature. The reaction mixture was cooled to room temperature and to this a mixture of N-methyl pyrrolidine (300 gm), triethylamine (66.31 gm), Tetrabutyl ammonium bromide (52.8 gm) and trimethyl silyl chloride (17.8 gm) were added. The above reaction mixture was heated to 50-55 °C and was added slowly chloromethyl. isopropyl carbonate (CMIC) and maintained the reaction mixture at 50-55°C for 5 hrs. (Qualitative HPLC analysis shows about 85% product formation). The above reaction mixture was cooled to room temperature and filtered. The filtrate was added to DM water at 5-10°C and extract with dichloromethane. The combined dichloromethane layer was concentrated under vacuum and the crude was Co-distilled with cyclohexane and this crude was taken into isopropyl alcohol (1000 ml). To this fumaric acid (38 gm) was added and temperature was raised to 50° C. The reaction mixture was filtered and filtrate was cooled to 5-10° C. The obtained solid was filtered and washed with isopropyl alcohol. The compound was dried under vacuum to yield Tenofovir Disoproxil fumarate (140 gm).

Example-2 : Preparation of Tenofovir

N-methyl-2-pyrrolidone (25 gm) was taken along with toluene (150 gm) into a reaction vessel. l-(6-amino-purin-9-yl)-propan-2-ol (100 gm); toluene-4-sulfonic acid diethoxy phosphoryl methyl ester (200 gm) and magnesium ter-butoxide (71.2 gm) were also taken at’ 25-35°C. Temperature was raised to 74-75 °C and maintained for 5-6hrs. After completion of reaction, acetic acid (60 gm) was added and maintained for 1 hr. Later aq.HBr (332 gm) was taken and heated to 90-95 °C. After reaction completion, salts were filtered and filtrate was subjected to washings with water and extracted into methylene dichloride. Later pH was adjusted using CS lye below 10 °C. Tenofovir product was isolated using acetone.

Yield: 110 gm.

Example 3 : Preparation of Tenofovir disoproxil

(R)-9-[2-(phosphonomethoxy)propyl]adenine (25 gm), triethyl amine (25 ml) and cyclohexane (200 ml) were combined and heated to remove water and the solvent was distilled off under vacuum. The reaction mass was cooled to room temperature N-methyl pyrrolidinone (55 ml), triethyl amine (25 ml) and tetra butyl ammonium bromide(54 gms) were added to the reaction mixture. The reaction mass was heated to 50-60°C and chloromethyl isopropyl carbonate (65 gm) was added and maintained for 4-8 hrs at 50- 60°C and then cooled to 0°C. The reaction mass was diluted with chilled water or ice and precipitated solid product was filtered. The mother liquor was extracted with methylene chloride (150 ml). The methylene chloride layer was washed with water (200 ml). The filtered solid and the methylene chloride layer were combined and washed with water and the solvent was distilled under vacuum. Ethyl acetate was charged to the precipitated solid. The reaction mass was then cooled to 0-5 °C and maintained for 6 hrs. The solid was filtered and dried to produce Tenofovir disoproxil (45 gm).

CLIPS

The reaction of chloromethyl chloroformate (I) with isopropyl alcohol (II) by means of pyridine or triethylamine in ether gives the mixed carbonate (III), which is then condensed with (R)-PMPA (IV) by means of diisopropyl ethyl-amine in DMF.

US 5922695; WO 9804569

CLIP 2

1) The protection of isobutyl D-(+)-lactate (I) with dihydropyran (DHP)/HCl in DMF gives the tetrahydropyranyloxy derivative (II), which is reduced with bis(2-methoxyethoxy)aluminum hydride in refluxing ether/ toluene yielding 2(R)-(tetrahydropyranyloxy)-1-propanol (III). The tosylation of (III) with tosyl chloride as usual affords the expected tosylate (VI), which is condensed with adenine (V) by means of Cs2CO3 in hot DMF, affording 9-[2(R)-(tetrahydropyranyloxy)propyl]adenine (VI). The deprotection of (VI) with sulfuric acid affords 9-[2(R)-hydroxypropyl]adenine (VII), which is N-benzoylated with benzoyl chloride/chlorotrimethylsilane in pyridine to give the benzamide (VIII), which is condensed with tosyl-oxymethylphosphonic acid diisopropyl ester (IX) by means of NaH in DMF to yield 9-[2(R)-(diisopropoxyphosphorylmethoxy)propyl]adenine (X). Finally, this compound is hydrolyzed by means of bromotrimethylsilane in acetonotrile.

 

 

2) The reaction of the previously described (R)-2-(2-tetrahydropyranyloxy)-1-propanol (III) with benzyl bromide (XI) by means of NaH in DMF, followed by a treatment with Dowex 50X, gives 1-benzyloxy-2(R)-propanol (XII), which is condensed with tosyloxymethylphosphonic acid diisopropyl ester (IX) by means of NaH in THF, yielding 2-benzyloxy-1(R)-methylethoxymethylphosphonic acid diisopropyl ester (XIII). The hydrogenolysis of (XIII) over Pd/C in methanol affords 2-hydroxy-1(R)-methylethoxymethylphosphonic acid diisopropyl ester (XIV), which is tosylated with tosyl chloride/dimethyl-aminopyridine in pyridine to give the expected tosylate (XV). The condensation of (XV) with adenine (VI) by means of Cs2CO3 in hot DMF yields 9-[2(R)-(diisopropoxyphosphorylmethoxy)propyl]adenine (X), which is finally hydrolyzed as before.

 

3) The catalytic hydrogenation of (S)-glycidol (XVI) over Pd/C gives the (R)-1,2-propanediol (XVII), which is esterified with diethyl carbonate (XVIII)/NaOEt, yielding the cyclic carbonate (XIX). The reaction of (XIX) with adenine (V) by means of NaOH in DMF affords 9-[2(R)-hydroxypropyl]adenine (VII), which is condensed with tosyloxymethylphosphonic acid diethyl ester (XX) by means of lithium tert-butoxide in THF, giving 9-[2(R)-(diethoxyphosphorylmethoxy)propyl]adenine (XXI). Finally, this compound is hydrolyzed with bromotrimethylsilane as before. Compound (XX) is obtained by reaction of diethyl phosphite (XXII) with paraformaldehyde, yielding hydroxy- methylphosphonic acid diethyl ester (XXIII), which is finally tosylated as usual.

 

References

  1. R. Baselt, Disposition of Toxic Drugs and Chemicals in Man, 8th edition, Biomedical Publications, Foster City, California, 2008, pp. 1490–1492.

External links

WO2008007392A2 Jul 11, 2007 Jan 17, 2008 Matrix Lab Ltd Process for the preparation of tenofovir
US5922695 Jul 25, 1997 Jul 13, 1999 Gilead Sciences, Inc. Antiviral phosphonomethyoxy nucleotide analogs having increased oral bioavarilability
WO2015051874A1 Sep 22, 2014 Apr 16, 2015 Zentiva, K.S. An improved process for the preparation of tenofovir disoproxil and pharmaceutically acceptable salts thereof
CN103360425A * Apr 1, 2012 Oct 23, 2013 安徽贝克联合制药有限公司 Synthesis method of tenofovir disoproxil and fumarate thereof
CN103374038A * Apr 11, 2012 Oct 30, 2013 广州白云山制药股份有限公司广州白云山制药总厂 Preparation method of antiviral medicine
CN103848868A * Dec 4, 2012 Jun 11, 2014 蚌埠丰原涂山制药有限公司 Method for preparing tenofovir
CN103848869A * Dec 4, 2012 Jun 11, 2014 上海医药工业研究院 Method for preparing tenofovir
CN103980319A * Apr 24, 2014 Aug 13, 2014 浙江外国语学院 Preparation method of tenofovir
CN103980319B * Apr 24, 2014 Dec 2, 2015 浙江外国语学院 一种泰诺福韦的制备方法
EP2860185A1 Oct 9, 2013 Apr 15, 2015 Zentiva, k.s. An improved process for the preparation of Tenofovir disoproxil and pharmaceutically acceptable salts thereof

 

 

The chemical name of tenofovir disoproxil fumarate is 9-[(R)-2[[bis[[(isopropoxycarbonyl)oxy]methoxy]phosphinyl]methoxy]propyl]adenine fumarate (1:1). It has a molecular formula of C19H30N5O10P • C4H4O4 and a molecular weight of 635.52. It has the following structural formula:

 

VIREAD® (tenofovir disoproxil fumarate) Structural Formula Illustration

Tenofovir disoproxil fumarate is a white to off-white crystalline powder with a solubility of 13.4 mg/mL in distilled water at 25 °C. It has an octanol/phosphate buffer (pH 6.5) partition coefficient (log p) of 1.25 at 25 °C.

VIREAD is available as tablets or as an oral powder.

VIREAD tablets are for oral administration in strengths of 150, 200, 250, and 300 mg of tenofovir disoproxil fumarate, which are equivalent to 123, 163, 204 and 245 mg of tenofovir disoproxil, respectively. Each tablet contains the following inactive ingredients: croscarmellose sodium, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and pregelatinized starch. The 300 mg tablets are coated with Opadry II Y-3010671-A, which contains FD&C blue #2 aluminum lake, hypromellose 2910, lactose monohydrate, titanium dioxide, and triacetin. The 150, 200, and 250 mg tablets are coated with Opadry II 32K-18425, which contains hypromellose 2910, lactose monohydrate, titanium dioxide, and triacetin.

VIREAD oral powder is available for oral administration as white, taste-masked, coated granules containing 40 mg of tenofovir disoproxil fumarate per gram of oral powder, which is equivalent to 33 mg of tenofovir disoproxil. The oral powder contains the following inactive ingredients: mannitol, hydroxypropyl cellulose, ethylcellulose, and silicon dioxide.

enofovir disoproxil
Tenofovir disoproxil structure.svg
Systematic (IUPAC) name
Bis{[(isopropoxycarbonyl)oxy]methyl} ({[(2R)-1-(6-amino-9H-purin-9-yl)-2-propanyl]oxy}methyl)phosphonate
Clinical data
Trade names Viread
AHFS/Drugs.com monograph
Pregnancy
category
  • AU: B3
  • US: B (No risk in non-human studies)
Routes of
administration
Oral (tablets)
Legal status
Legal status
Pharmacokinetic data
Bioavailability 25%
Identifiers
CAS Number 201341-05-1
ATC code J05AF07 (WHO)
PubChem CID 5481350
ChemSpider 4587262
UNII F4YU4LON7I
ChEBI CHEBI:63717
NIAID ChemDB 080741
Chemical data
Formula C19H30N5O10P
Molar mass 519.443 g/mol
Tenofovir
Tenofovir structure.svg
Systematic (IUPAC) name
({[(2R)-1-(6-amino-9H-purin-9-yl)propan-2-yl]oxy}methyl)phosphonic acid
Clinical data
MedlinePlus a602018
Routes of
administration
In form of prodrugs
Pharmacokinetic data
Protein binding < 1%
Biological half-life 17 hours
Excretion Renal
Identifiers
CAS Number 147127-20-6 Yes
ATC code None
PubChem CID 464205
DrugBank DB00300 Yes
ChemSpider 408154 Yes
UNII 99YXE507IL Yes
KEGG D06074 Yes
ChEBI CHEBI:63625
ChEMBL CHEMBL483 Yes
Synonyms 9-(2-Phosphonyl-methoxypropyly)adenine (PMPA)
Chemical data
Formula C9H14N5O4P
Molar mass 287.213 g/mol

///////

Share

Breaking the symmetry of dibenzoxazines: a paradigm to tailor the design of bio-based thermosets

 spectroscopy, SYNTHESIS  Comments Off on Breaking the symmetry of dibenzoxazines: a paradigm to tailor the design of bio-based thermosets
Mar 132016
 

 

Green Chem., 2016, Advance Article

DOI: 10.1039/C5GC03102H, Paper

L. Puchot, P. Verge, T. Fouquet, C. Vancaeyzeele, F. Vidal, Y. Habibi

Asymmetric di-benzoxazine monomers from naturally occurring phenolic compounds – cardanol and vanillin – were synthesized to obtain a processable and self-supported bio-thermoset with valuable properties. Such strategy constitutes an efficient and versatile route for the elaboration of biobased thermoset from a wide range of phenolic compounds derived from renewable resources.

Breaking the symmetry of dibenzoxazines: a paradigm to tailor the design of bio-based thermosets

http://pubs.rsc.org/en/Content/ArticleLanding/2016/GC/C5GC03102H?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract

With the ongoing efforts to promote the development of bio-based dibenzoxazine thermosets, we explore herein a new strategy aiming at the synthesis of asymmetric dibenzoxazine monomers from naturally occurring phenolic compounds, cardanol and vanillin. By taking advantage of the low reactivity of cardanol, a monosubstituted cardanol-based benzoxazine monomer was prepared and further coupled with vanillin to yield vanillin–cardanol di-benzoxazines. The structural features of the resulting products were substantiated by 1H NMR and HR-MS. The occurrence of the thermally-induced ring-opening polymerization was monitored by rheological measurements and DSC. At 190 °C the new asymmetric monomers showed a moderate gelation time (8 min) compared to 30–31 min revealed for cardanol-based (di-card) dibenzoxazines. Once polymerized, they exhibited a high Tg (129 °C), while the di-card flew under heating because of its low cross-linking density. Asymmetric monomers also exhibited lower melting temperatures than their symmetrical congeners based on vanillin, which significantly enlarge the processing window between the melting and polymerization temperatures up to 126 °C instead of 7 °C for symmetric vanillin-based dibenzoxazines. Therefore, such a strategy constitutes an efficient and versatile route for an easy elaboration of biobased monocomponent thermosets and can be applied to a wide range of phenolic compounds derived from renewable resources.

Breaking the symmetry of dibenzoxazines: a paradigm to tailor the design of bio-based thermosets

L. Puchot,ab   P. Verge,*a   T. Fouquet,c   C. Vancaeyzeele,b  F. Vidalb and   Y. Habibi*a  

*Corresponding authors

aLuxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg 

bLaboratoire de Physicochimie des Polymères et des Interfaces (LPPI – EA 2528), I-Mat, Université de Cergy-Pontoise, 5 mail Gay-Lussac, 95031 Cergy-Pontoise, France

cEnvironmental Measurement Technology Group, Environmental Management and Research Institute (EMRI), National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Japan

Green Chem., 2016, Advance Article

DOI: 10.1039/C5GC03102H 

//////////

 

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: