AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

Application of On-Line NIR for Process Control during the Manufacture of Sitagliptin

 spectroscopy, SYNTHESIS  Comments Off on Application of On-Line NIR for Process Control during the Manufacture of Sitagliptin
Sep 122016
 
Abstract Image

The transamination-chemistry-based process for sitagliptin is a through-process, which challenges the crystallization of the active pharmaceutical ingredient (API) in a batch stream composed of multiple components. Risk-assessment-based design of experiment (DoE) studies of particle size distribution (PSD) and crystallization showed that the final API PSD strongly depends on the seeding-point temperature, which in turn relies on the solution composition.

To determine the solution composition, near-infrared (NIR) methods had been developed with partial least squares (PLS) regression on spectra of simulated process samples whose compositions were made by spiking each pure component, either sitagliptin free base (FB), water, isopropyl alcohol (IPA), dimethyl sulfoxide (DMSO), or isopropyl acetate (IPAc), into the process stream according to a DoE. An additional update to the PLS models was made by incorporating the matrix difference between simulated samples in lab and factory batches.

Overall, at temperatures of 20–35 °C, the NIR models provided a standard error of prediction (SEP) of less than 0.23 wt % for FB in 10.56–32.91 wt %, 0.22 wt % for DMSO in 3.77–19.18 wt %, 0.32 wt % for IPAc in 0.00–5.70 wt %, and 0.23 wt % for water in 11.20–28.58 wt %. After passing the performance qualification, these on-line NIR methods were successfully established and applied for the on-line analysis of production batches for compositions prior to the seeding point of sitagliptin crystallization.

 

 

str1

 

Application of On-Line NIR for Process Control during the Manufacture of Sitagliptin

Global Science, Technology and Commercialization, Merck Sharp & Dohme Corporation P.O. Box 2000, Rahway, New Jersey 07065, United States
Org. Process Res. Dev., 2016, 20 (3), pp 653–660
DOI: 10.1021/acs.oprd.5b00409

////////On-Line NIR,  Process Control, Sitagliptin

Share

Multicomponent-Multicatalyst Reactions (MC)2R: Efficient Dibenzazepine Synthesis

 spectroscopy, SYNTHESIS  Comments Off on Multicomponent-Multicatalyst Reactions (MC)2R: Efficient Dibenzazepine Synthesis
Aug 302016
 

Multicomponent-Multicatalyst Reactions (MC)2R: Efficient Dibenzazepine Synthesis
Jennifer Tsoung, Jane Panteleev, Matthias Tesch, and Mark Lautens

Org. Lett. 2014, 16, 110-113. DOI:10.1021/ol4030925 .

http://pubs.acs.org/doi/abs/10.1021/ol4030925

A RhI/Pd0 catalyst system was applied to the multicomponent synthesis of aza-dibenzazepines from vinylpyridines, arylboronic acids, and amines in a domino process with no intermediate isolation or purification.

5-(p-tolyl)-3-(trifluoromethyl)-10,11-dihydro-5H-benzo[b]pyrido[2,3-f]azepine (4a)

STR1

1H NMR
(400 MHz, CDCl3) δ 8.66 (d, J = 1.1 Hz, 1H), 7.97 (d, J = 1.8 Hz, 1H), 7.43 – 7.38 (m, 1H), 7.38 – 7.29
(m, 3H), 6.98 (d, J = 8.4 Hz, 2H), 6.57 – 6.51 (m, 2H), 3.33 – 3.21 (m, 2H), 3.09 – 2.99 (m, 2H), 2.26 (s,
3H);

13C NMR (101 MHz, CDCl3) δ 161.7 (q, J = 1.3 Hz), 145.8, 143.6, 143.4 (q, J = 4.0 Hz), 139.7,
139.5, 134.9 (q, J = 3.5 Hz), 130.3, 130.0, 129.9, 128.9, 128.2, 127.7, 125.3 (q, J = 33.1 Hz), 123.4 (q, J =
272.5 Hz), 114.0 (2), 35.9, 29.0, 20.4;

19F NMR (377 MHz, CDCl3) δ -62.0;

IR (NaCl, neat): 3063, 3028,
2926, 2862, 1616, 1506, 1489, 1456, 1435, 1429, 1410, 1339, 1319, 1296, 1267, 1240, 1207, 1165, 1128,
1086, 1036, 978, 947, 930, 910, 895, 808, 772, 756, 737, 721, 704, 687, 664, 646, 627 cm-1;

HRMS (ESI):
calcd for C21H18F3N2 (M+H)+: 355.1422; found. 355.1419.

STR1

Jennifer Tsoung

Jennifer Tsoung

Jennifer Tsoung

PhD graduate, organic chemistry

Department of Chemistry, University of Toronto

Experience

PhD

University of Toronto

(5 years 2 months)

Research Intern

Kyoto University

(3 months)Kyoto, Japan

Methodology project in asymmetric phase-transfer catalyzed alkylations.

Co-op student

Angiotech

(4 months)Vancouver, Canada Area

Formulation chemistry

Co-op student

Boehringer Ingelheim

(8 months)Montreal, Canada Area

On two hit-to-lead teams working to synthesize analogues of hit compounds for HIV research.

Publications

Diastereoselective Friedel−Crafts Alkylation of Hydronaphthalenes(Link)

The Journal of Organic Chemistry

September 27, 2011

An efficient and versatile synthesis of chiral tetralins has been developed using both inter- and intramolecular Friedel-Crafts alkylation as a key step. The readily available hydronaphthalene substrates were prepared via a highly enantioselective metal-catalyzed ring opening of meso-oxabicyclic alkenes followed by hydrogenation. A wide variety of complex tetracyclic compounds have been isolated…more

One-Pot Synthesis of Chiral Dihydrobenzofuran Framework via Rh/Pd Catlaysis

Organic Letters

October 12, 2012

A one-pot synthesis of the chiral dihydrobenzofuran framework is described. The method utilizes Rh-catalyzed asymmetric ring opening (ARO) and Pd-catalyzed C-O coupling to furnish the product in excellent enantioselectivity without isolation of intermediates. Systematic metal-ligand studies were carried out to investigate the compatibility of each catalytic system using product enantiopurity as an…more

Rh/Pd Catalysis with Chiral and Achiral Ligands: Domino Synthesis of Aza-Dihydrodibenzoxepines(Link)

Angew. Chem. Int. Ed

July 19, 2013

A game of dominoes: A synthetic route to aza-dihydrodibenzoxepines is described, through the combination of a Rh-catalyzed arylation and a Pd-catalyzed C-O coupling in a single pot. For the first time, the ability to incorporate a chiral and an achiral ligand in a two-component, two-metal transformation is achieved, giving the products in moderate to good yields, with excellent enantioselectivities.

Multicomponent-multicatalyst reactions (MC)(2)R: efficient dibenzazepine synthesis.

Organic Letters

January 13, 2014

A Rh(I)/Pd(0) catalyst system was applied to the multicomponent synthesis of aza-dibenzazepines from vinylpyridines, arylboronic acids, and amines in a domino process with no intermediate isolation or purification.

Formation of substituted oxa- and azarhodacyclobutanes.

Chemistry – A European Journal

December 6, 2013

The preparation of substituted oxa- and azarhodacyclobutanes is reported. After exchange of ethylene with a variety of unsymmetrically and symmetrically substituted alkenes, the corresponding rhodium-olefin complexes were oxidized with H2O2 and PhINTs (Ts=p-toluenesulfonyl) to yield the substituted oxa- and azarhodacyclobutanes, respectively. Oxarhodacyclobutanes could be prepared with excellent…more

Women in Chemistry group, 2015

Lautens Research Group :: Group Pictures

 

 

 

Mark Lautens , O.C.

University Professor
J. Bryan Jones Distinguished Professor
AstraZeneca Professor of Organic Chemistry
NSERC/Merck-Frosst Industrial Research Chair



Department of Chemistry
Davenport Chemical Laboratories
80 St. George St.
University of Toronto
Toronto, Ontario
M5S 3H6

Tel: (416) 978-6083
Fax: (416) 946-8185
E-Mail: mlautens@chem.utoronto.ca

Curriculum Vitae

Personal

Place and Date of Birth Hamilton, Ontario, Canada July 9, 1959

Education

Harvard University NSERC PDF with D. A. Evans 1985 – 1987
University of Wisconsin-Madison Ph.D. with B. M. Trost 1985
University of Guelph B.Sc. – Distinction 1981

Academic Positions

J. Bryan Jones Distinguished Professor University of Toronto 2013 – 2018
University Professor University of Toronto 2012 – present
NSERC/Merck Frosst Industrial Research Chair NSERC/Merck Frosst 2003 – 2013
AstraZeneca Professor of Organic Synthesis University of Toronto 1998 – present
Professor University of Toronto 1995 – 1998
Associate Professor University of Toronto 1992 – 1995
Assistant Professor University of Toronto 1987 – 1992

Awards & Honors

University of Toronto Alumni Faculty Award University of Toronto 2016
CIC Catalysis Award CSC 2016
Officer of the Order of Canada Governor General 2014
Killam Research Fellowship Canada Council for the Arts 2013-2015
CIC Medal Chemical Institute of Canada 2013
Fellow of the Royal Society of UK Royal Society of Chemistry 2011
Pedler Award Royal Society of Chemistry 2011
Senior Scientist Award Alexander von Humboldt Foundation
Berlin, Aachen and Gottingen
2009-2014
Visiting Professor University of Berlin 2009
Visiting Professor Université de Marseilles 2008
ICIQ Summer School ICIQ Tarragona, Spain 2008
Attilio Corbella Summer School Professor Italian Chemical Society 2007
Arthur C. Cope Scholar Award American Chemical Society 2006
Alfred Bader Award Canadian Society for Chemistry 2006
R. U. Lemieux Award Canadian Society for Chemistry 2004
Solvias Prize Solvias AG 2002
Fellow of the Royal Society of Canada Royal Society of Canada 2001

Areas of Research Interest and Expertise

  • new synthetic methods
  • metal catalyzed cycloaddition and annulation reactions
  • asymmetric catalysis with focus on rhodium, nickel and palladium catalysts
  • cyclopropane synthesis and reactions
  • hydrometallation reactions
  • reactions of organosilicon and organotin compounds
  • fragmentation reactions
  • new routes to medicinally/biologically interesting compounds
  • heterocycle synthesis using metal catalysts

 

///////Multicomponent, Multicatalyst Reactions,  (MC)2R,  Dibenzazepine Synthesis, Mark Lautens, University of Toronto ,
Toronto, Ontario, Jennifer Tsoung

Share

Continuous Processing and Efficient in Situ Reaction Monitoring of a Hypervalent Iodine(III) Mediated Cyclopropanation Using Benchtop NMR Spectroscopy

 spectroscopy, SYNTHESIS  Comments Off on Continuous Processing and Efficient in Situ Reaction Monitoring of a Hypervalent Iodine(III) Mediated Cyclopropanation Using Benchtop NMR Spectroscopy
Aug 292016
 

 

Abstract Image

Real-time NMR spectroscopy has proven to be a rapid and an effective monitoring tool to study the hypervalent iodine(III) mediated cyclopropanation. With the ever increasing number of new synthetic methods for carbon–carbon bond formation, the NMR in situ monitoring of reactions is becoming a highly desirable enabling method. In this study, we have demonstrated the versatility of benchtop NMR using inline and online real-time monitoring methods to access mutually complementary information for process understanding, and we developed new approaches for real-time monitoring addressing challenges associated with better integration into continuous processes.

Continuous Processing and Efficient in Situ Reaction Monitoring of a Hypervalent Iodine(III) Mediated Cyclopropanation Using Benchtop NMR Spectroscopy

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
Magritek GmbH, Gebäude VO (Building VO), Triwo Technopark Aachen, Philipsstrasse 8, 52068 Aachen, Germany
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.6b00177
Steven V. Ley received his PhD from Loughborough University in 1972, after which he carried out post-doctoral research with Professor Leo Paquette at Ohio State University, followed by Professor Derek Barton at Imperial College London. In 1975, he joined that Department as a lecturer and became Head of Department in 1989. In 1992, he moved to the 1702 BP Chair of Organic Chemistry at the University of Cambridge and became a Fellow of Trinity College. He was elected to the Royal Society in 1990 and was President of the Royal Society of Chemistry (RSC) 2000-02. Steve has been the recipient of many prizes and awards including the Yamada-Koga Prize, Nagoya Gold Medal, ACS Award for Creative Work in Synthetic Organic Chemistry and the Paul Karrer Medal.
 

STR1 str2 STR3

Ethyl 2-(4-tert-butylphenyl)-1-nitrocyclopropanecarboxylate (5):

[E]-isomer: 1H NMR (600 MHz, CDCl3): δ 0.80-0.85 (t, J = 7.1 Hz, 3H), 1.29 (s, 9H), 2.16-2.21 (dd, J = 10.7, 6.6 Hz, 1H), 2.41-2.46 (dd, J = 9.1, 6.6 Hz, 1H), 3.72-3.77 (m, 1H), 3.88-4.04 (m, 2H), 7.12-7.15 (d, J = 8.3 Hz, 2H), 7.30-7.37 (d, J = 8.4 Hz, 2H).

13C NMR (150 MHz, CDCl3) δ 161.96, 151.38, 128.96, 128.15, 125.37, 71.71, 62.37, 34.54, 33.91, 31.21, 20.73, 13.35.

HRMS (ESI) Calcd. for C16H21NO4 ([M+H]+): 292.15, Found 292.15:

 

[Z]-isomer: 1H NMR (600 MHz, CDCl3): δ 1.30 (s, 9H), 1.34-1.37 (t, J = 7.1 Hz, 3H), 2.00-2.04 (dd, J = 9.9, 6.9 Hz, 1H), 2.64-2.68 (dd, J = 9.2, 6.9 Hz, 1H), 3.43-3.48 (t, J = 9.6 Hz, 1H), 4.31-4.41 (m, 2H), 7.14-7.17 (d, J = 8.3 Hz, 2H), 7.32-7.36 (d, J = 8.4 Hz, 2H).

13C NMR (150 MHz, CDCl3) δ 165.40, 151.56, 128.33, 127.99, 125.63, 72.63, 63.14, 34.55, 33.48, 31.22, 20.08, 13.98.

Zhu, S.; Perman, J. A.; Zhang, X. P. Angew. Chem. Int. Ed. 2008, 47, 8460-8463.

ORGANIC CHEMISTRY RESEARCH GROUP

Steve Ley

/////////

Share

Synmr Chemicals Pvt Ltd, the first manufacturers of NMR Solvents in India

 companies, spectroscopy, SYNTHESIS  Comments Off on Synmr Chemicals Pvt Ltd, the first manufacturers of NMR Solvents in India
Jul 202016
 
 
“Synmr Chemicals Pvt Ltd” (Formerly known as Synovation Chemicals Pvt Ltd) are the first manufacturers of NMR Solvents in India. This would benefit the Indian Science community as they no longer would have to depend on Imports, high pricing and uncertain supply.
Please do assist “Synmr” and promote our “Make in India” endeavor


Synmr Chemicals Pvt Ltd (Previously known as
Synovation Chemicals and Sourcing Pvt Ltd) is engaged in the manufacture of NMR
(Deuterated solvents).
With permission of Heavy Water Board, we can now
offer NMR Solvents manufactured in India.
 
They are the first manufactures of NMR solvents in
India and the following products have been developed and up scaled.
 
1. Chloroform D 99.8%
2.   DMSO D6 99.8%
3.   Methyl Iodide D3 99.5%
4.   Acetone D6 99.8%
5.   Acetonitrile D3 99.8%
In the Pipeline
·
Methanol
D4
·
Ethanol
D6
 





















We kindly request you to send your enquiries to

 
Suresh R Iyer
suresh@synmr.in           Contact Number +9193212 58158
dinesh@synmr.in           Contact Number +9198454 04105
Dr Sankar Iyer       sankar@synovationchemicals.in       +91 94490 63877  
Website is
www.synmr.in

nmr@synovationchemicals.in

Promote our NMR solvents and thus encourage MAKE IN INDIA.

 

 

Thanks 
Regards….?
Suresh R Iyer

————————————————————————————————————————

Team

 

INFO FROM LITERATURE OR NET

//////

Share

Nickel-Catalyzed Decarbonylative Suzuki–Miyaura Coupling of Amides To Generate Biaryls

 PROCESS, spectroscopy, SYNTHESIS  Comments Off on Nickel-Catalyzed Decarbonylative Suzuki–Miyaura Coupling of Amides To Generate Biaryls
Jul 112016
 

Thumbnail image of graphical abstract

Shi et al. have reported a nickel-catalyzed decarbonylative Suzuki–Miyaura reaction which uses an N-aroylpiperidine-2,6-dione as the coupling partner for the boronic acid ( Angew. Chem., Int. Ed. 2016, 55, 6959−6963).
The method is attractive from the point of view of the stability of N-aroylpyrrolidine-2,5-diones toward storage and manipulation and the flexibility they add to the chemist’s toolbox, given their preparation from a different group of precursors to aryl halides or triflates.
Notably, the reaction uses an air-stable and inexpensive nickel catalyst, and the reactions tolerate the presence of water. While a standard reaction temperature of 150 °C is quoted, the use of temperatures as low as 80 °C also seem to be possible. Coupling efficiency is reported to be adversely affected when the aromatic rings of both of the coupling partners bear electron-donating substituents.
Ortho substituents on the aromatic rings seem to be beneficial as they facilitate decarbonylation as part of the cross-coupling. Oxidative addition into the N–C(aroyl) bond of the amide is proposed as initiating the catalytic cycle and is possible on account of a reduction in the resonance stabilization of the N-aroyl functionality versus a conventional aromatic amide.

Suzuki–Miyaura Coupling

Synthesis of Biaryls through Nickel-Catalyzed Suzuki–Miyaura Coupling of Amides by Carbon–Nitrogen Bond Cleavage (pages 6959–6963)Shicheng Shi, Guangrong Meng and Prof. Dr. Michal Szostak

Version of Record online: 21 APR 2016 | DOI: 10.1002/anie.201601914

Thumbnail image of graphical abstract

Breaking and making: The first nickel-catalyzed Suzuki–Miyaura coupling of amides for the synthesis of biaryl compounds through N−C amide bond cleavage is reported. The reaction tolerates a wide range of sensitive and electronically diverse substituents on both coupling partners.

STR1

STR1

1H NMR (500 MHz, CDCl3) δ 7.70 (s, 4 H), 7.61 (d, J = 7.3 Hz, 2 H), 7.48 (t, J = 7.6 Hz, 2 H), 7.42 (t, J = 7.3 Hz, 1 H).

 

STR1

13C NMR (125 MHz, CDCl3) δ 144.87, 139.92, 129.48 (q, J F = 32.5 Hz), 129.13, 128.32, 127.56, 127.42, 125.83 (q, J F = 3.8 Hz), 124.46 (q, J F = 270.0 Hz).

 

STR1

19F NMR (471 MHz, CDCl3) δ -62.39.

//////Nickel-Catalyzed,  Decarbonylative Suzuki–Miyaura Coupling,  Amides, Biaryls

Share

Review, Continuous Processing

 PROCESS, spectroscopy, SYNTHESIS, Uncategorized  Comments Off on Review, Continuous Processing
Jun 272016
 

Continuous Processing

 

Continuous production is a flow production method used to manufacture, produce, or process materials without interruption. Continuous production is called a continuous process or a continuous flow process because the materials, either dry bulk or fluids that are being processed are continuously in motion, undergoing chemical reactions or subject to mechanical or heat treatment. Continuous processing is contrasted with batch production.

Continuous usually means operating 24 hours per day, seven days per week with infrequent maintenance shutdowns, such as semi-annual or annual. Some chemical plants can operate for more than one or two years without a shutdown. Blast furnaces can run four to ten years without stopping.[1]

Production workers in continuous production commonly work in rotating shifts.

Processes are operated continuously for practical as well as economic reasons. Most of these industries are very capital intensive and the management is therefore very concerned about lost operating time.

Shutting down and starting up many continuous processes typically results in off quality product that must be reprocessed or disposed of. Many tanks, vessels and pipes cannot be left full of materials because of unwanted chemical reactions, settling of suspended materials or crystallization or hardening of materials. Also, cycling temperatures and pressures from starting up and shutting down certain processes (line kilns, boilers, blast furnaces, pressure vessels, etc.) may cause metal fatigue or other wear from pressure or thermal cycling.

In the more complex operations there are sequential shut down and start up procedures that must be carefully followed in order to protect personnel and equipment. Typically a start up or shut down will take several hours.

Continuous processes use process control to automate and control operational variables such as flow rates, tank levels, pressures, temperatures and machine speeds.[2]

Semi-continuous processes

Many processes such as assembly lines and light manufacturing that can be easily shut down and restarted are today considered semi-continuous. These can be operated for one or two shifts if necessary.

History

The oldest continuous flow processes is the blast furnace for producing pig iron. The blast furnace is intermittently charged with ore, fuel and flux and intermittently tapped for molten pig iron and slag; however, the chemical reaction of reducing the iron and silicon and later oxidizing the silicon is continuous.

Semi-continuous processes, such as machine manufacturing of cigarettes, were called “continuous” when they appeared.

Many truly continuous processes of today were originally batch operations.

The Fourdrinier paper machine, patented in 1799, was one of the earliest of the industrial revolution era continuous manufacturing processes. It produced a continuous web of paper that was formed, pressed, dried and reeled up in a roll. Previously paper had been made in individual sheets.

Another early continuous processes was Oliver Evans‘es flour mill (ca. 1785), which was fully automated.

Early chemical production and oil refining was done in batches until process control was sufficiently developed to allow remote control and automation for continuous processing. Processes began to operate continuously during the 19th century. By the early 20th century continuous processes were common.

Shut-downs

In addition to performing maintenance, shut downs are also when process modifications are performed. These include installing new equipment in the main process flow or tying-in or making provisions to tie-in sub-processes or equipment that can be installed while the process is operating.

Shut-downs of complicated processes may take weeks or months of planning. Typically a series of meetings takes place for co-ordination and planning. These typically involve the various departments such as maintenance, power, engineering, safety and operating units.

All work is done according to a carefully sequenced schedule that incorporates the various trades involved, such as pipe-fitters, millwrights, mechanics, laborers, etc., and the necessary equipment (cranes, mobile equipment, air compressors, welding machines, scaffolding, etc.) and all supplies (spare parts, steel, pipe, wiring, nuts and bolts) and provisions for power in case power will also be off as part of the outage. Often one or more outside contractors perform some of the work, especially if new equipment is installed.

Safety

Safety meetings are typically held before and during shutdowns. Other safety measures include providing adequate ventilation to hot areas or areas where oxygen may become depleted or toxic gases may be present and checking vessels and other enclosed areas for adequate levels of oxygen and insure absence of toxic or explosive gases. Any machines that are going to be worked on must be electrically disconnected, usually through the motor starter, so that it cannot operate. It is common practice to put a padlock on the motor starter, which can only be unlocked by the person or persons who is or are endangered by performing the work. Other disconnect means include removing couplings between the motor and the equipment or by using mechanical means to keep the equipment from moving. Valves on pipes connected to vessels that workers will enter are chained and locked closed, unless some other means is taken to insure that nothing will come through the pipes.

Continuous processor (equipment)

Continuous Production can be supplemented using a Continuous Processor. Continuous Processors are designed to mix viscous products on a continuous basis by utilizing a combination of mixing and conveying action. The Paddles within the mixing chamber (barrel) are mounted on two co-rotating shafts that are responsible for mixing the material. The barrels and paddles are contoured in such a way that the paddles create a self-wiping action between themselves minimizing buildup of product except for the normal operating clearances of the moving parts. Barrels may also be heated or cooled to optimize the mixing cycle. Unlike an extruder, the Continuous Processor void volume mixing area is consistent the entire length of the barrel ensuring better mixing and little to no pressure build up. The Continuous Processor works by metering powders, granules, liquids, etc. into the mixing chamber of the machine. Several variables allow the Continuous Processor to be versatile for a wide variety of mixing operations:[3]

  1. Barrel Temperature
  2. Agitator speed
  3. Fed rate, accuracy of feed
  4. Retention time (function of feed rate and volume of product within mixing chamber)

Continuous Processors are used in the following processes:

  • Compounding
  • Mixing
  • Kneading
  • Shearing
  • Crystallizing
  • Encapsulating

The Continuous Processor has an unlimited material mixing capabilities but, it has proven its ability to mix:

  • Plastics
  • Adhesives
  • Pigments
  • Composites
  • Candy
  • Gum
  • Paste
  • Toners
  • Peanut Butter
  • Waste Products

EXAMPLE…………….

 

 

Abstract Image

In the development of a new route to bendamustine hydrochloride, the API in Treanda, the key benzimidazole intermediate 5 was generated via catalytic heterogeneous hydrogenation of an aromatic nitro compound using a batch reactor. Because of safety concerns and a site limitation on hydrogenation at scale, a continuous flow hydrogenation for the reaction was investigated at lab scale using the commercially available H-Cube. The process was then scaled successfully, generating kilogram quantities on the H-Cube Midi. This flow process eliminated the safety concerns about the use of hydrogen gas and pyrophoric catalysts and also showed 1200-fold increase in space–time yield versus the batch processing.

Improved Continuous Flow Processing: Benzimidazole Ring Formation via Catalytic Hydrogenation of an Aromatic Nitro Compound

Org. Process Res. Dev., 2014, 18 (11), pp 1427–1433
Figure

EXAMPLE…………….


Correia et al. have published a three-step flow synthesis of rac-Effavirenz. This short synthetic route begins with cryogenic trifluoroacetylation of 1,4-dichlorobenzene. After quench and removal of morpholine using silica gel, this intermediate could either be isolated, or the product stream could be used directly in the next alkynylation step. Nucleophilic addition of lithium cyclopropylacetylide to the trifluoroacetate gave the propargyl alcohol intermediate in 90% yield in under 2 min residence time. This reaction was temperature-sensitive, and low temperatures were required to minimize decomposition. Again silica gel proved effective in the quench of the reaction. However, residual alkyne and other byproducts were difficult to remove. Thus, isolation of this intermediate was performed to minimize the impact of impurities on the final copper catalyzed cyanate installation/cyclization step to afford Effavirenz. Optimization of this step in batch mode for both copper source and ligand identified Cu(NO3)2 and CyDMEDA in a 1:4 molar ratio (20 mol % and 80 mol %, respectively) produced the product in 60% yield. Adaptation of this procedure to flow conditions resulted in poor conversion due to slow in situ reduction of the Cu(II) to Cu(I). Thus, a packed bed reactor of NaOCN and Cu(0) was used. Under these conditions, the ligand and catalyst loading could be reduced without compromising yield. Due to solubility limitations of Cu(NO3)2, Cu(OTf)2 was used with CyDMEDA in 1:2 molar ratio (5 mol % and 10 mol % loading, respectively). Under these optimized conditions, rac-Effavirenz was obtained in 62% isolated yield in reaction time of 1 h. This three-step process provides 45% overall yield of rac-Effavirenz and represents the shortest synthesis of this HIV drug reported to date
STR1
STR1
1H NMR (400 MHz, CDCl3, ppm) δ9.45 (s, 1H), 7.49 (s, 1H), 7.35 (dd, J = 8.5, 1.5 Hz, 1H), 6.86 (d, J = 8.5 Hz, 1H), 1.43-1.36 (m, 1H); 0.93-0.85 (m, 4H);
STR1
13C NMR (100 MHz, CDCl3, ppm) δ 149.2, 133.2, 131.7, 129.2, 127.8, 122.1 (q, JC-F = 286 Hz), 116.3, 115.1, 95.9, 79.6 (q, JC-F = 35 Hz), 66.1, 8.8, 0.6;
STR1
19F NMR (376 MHz, CDCl3, ppm) δ -80.98.
1 T. J. Connolly; A. W.-Y Chan; Z. Ding; M. R. Ghosh; X. Shi; J. Ren, E. Hansen; R. Farr; M. MacEwan; A. Alimardanov; et al, PCT Int. Appl. WO 2009012201 A2 20090122, 2009.
2 (a) Z. Dai, X. Long, B. Luo, A. Kulesza, J. Reichwagen, Y. Guo, (Lonza Ltd), PCT Int. Appl. WO2012097510, 2012; (b) D. D. Christ; J. A. Markwalder; J. M. Fortunak; S. S. Ko; A. E. Mutlib; R. L. Parsons; M. Patel; S. P. Seitz, PCT Int. Appl. WO 9814436 A1 19980409, 1998 (c) C. A. Correia; D. T. McQuade; P. H. Seeberger, Adv. Synth. Catal. 2013, 355, 3517−3521.

A Concise Flow Synthesis of Efavirenz

  • DOI: 10.1002/anie.201411728
SUPP INFO
STR1
STR1

 NEXT EXAMPLE…………….

 

Wang et al. developed a flow process that uses metal catalyzed hydrogenation of NAB (2-nitro-2′-hydroxy-5′-methylazobenzene) to BTA (2-(2′-hydroxy-5′-methylphenyl)benzotriazole), a commonly used ultraviolet absorber. The major challenge in this process was to optimize the reduction of the diazo functionality over the nitro group and control formation of over reduction side products. The initial screen of metals adsorbed onto a γ-Al2O3 support indicated Pd to be superior to the other metals and also confirmed that catalyst preparation plays an important role in selectivity. To better understand the characteristics of the supported metal catalyst systems, the best performing were analyzed by TEM, XRD, H2-TPR, and N2 adsorption–desorption. Finally, solvents and bases were screened ultimately arriving at the optimized conditions using toluene, 2 equiv n-butylamine over 1% Pd/Al2O3, which provided 90% yield BTA in process with 98% conversion. The process can run over 200 h without a decrease in performance
( ACS Sustainable Chem. Eng. 2015, 3,1890−1896)
.
Abstract Image

The synthesis of 2-(2′-hydroxy-5′-methylphenyl)benzotriazole from 2-nitro-2′-hydroxy-5′-methylazobenzene over Pd/γ-Al2O3 in a fixed-bed reactor was investigated. Pd/γ-Al2O3 catalysts were prepared by two methods and characterized by XRD, TEM, H2-TPR, and N2 adsorption–desorption. Employed in the above reaction, the palladium catalyst impregnated in hydrochloric acid exhibited much better catalytic performance than that impregnated in ammonia–water, which was possibly attributed to the better dispersion of palladium crystals on γ-Al2O3. This result demonstrated that the preparation process of the catalyst was very important. Furthermore, the reaction parameters were optimized. Under the optimized conditions (toluene, NAB/triethylamine molar ratio 1:2, 60 °C, 2.5 MPa hydrogen pressure, 0.23 h–1 liquid hourly space velocity), about 90% yield of 2-(2′-hydroxy-5′-methylphenyl)benzotriazole was obtained. Finally, the time on stream performance of the catalyst was evaluated, and the reaction could proceed effectively over 200 h without deactivation of the catalyst.

Construction of 2-(2′-Hydroxy-5′-methylphenyl)benzotriazole over Pd/γ-Al2O3 by a Continuous Process

ACS Sustainable Chem. Eng., 2015, 3 (8), pp 1890–1896
DOI: 10.1021/acssuschemeng.5b00507
Publication Date (Web): July 06, 2015

NEXT EXAMPLE…………….

 

Continuous Flow-Processing of Organometallic Reagents Using an Advanced Peristaltic Pumping System and the Telescoped Flow Synthesis of (E/Z)-Tamoxifen

continuous flow processing of organometallic reagents

A new enabling technology for the pumping of organometallic reagents such as n-butyllithium, Grignard reagents, and DIBAL-H is reported, which utilises a newly developed, chemically resistant, peristaltic pumping system. Several representative examples of its use in common transformations using these reagents, including metal–halogen exchange, addition, addition–elimination, conjugate addition, and partial reduction, are reported along with examples of telescoping of the anionic reaction products. This platform allows for truly continuous pumping of these highly reactive substances (and examples are demonstrated over periods of several hours) to generate multigram quantities of products. This work culminates in an approach to the telescoped synthesis of (E/Z)-tamoxifen using continuous-flow organometallic reagent-mediated transformations.

https://www.vapourtec.com/flow-chemistry-resource-centre/publications-citing-vapourtec/continuous-flow-processing-of-organometallic-reagents-using-an-advanced-peristaltic-pumping-system-and-the-telescoped-flow-synthesis-of-ez-tamoxifen/

 

NEXT EXAMPLE…………….

 

Multi-step Continuous Flow Pyrazole Synthesis via a Metal-free Amine-redox Process

A versatile multi-step continuous flow synthesis for the preparation of substituted pyrazoles is presented.

The automated synthesis utilises a metal-free ascorbic acid mediated reduction of diazonium salts prepared from aniline starting materials followed by hydrolysis of the intermediate hydazide and cyclo-condensation with various 1,3-dicarbonyl equivalents to afford good yields of isolated functionalised pyrazole products.

The synthesis of the COX-2 selective NSAID was demonstrated using this approach.

NEXT EXAMPLE…………….

 

Synthesis of a Precursor to Sacubitril Using Enabling Technologies

Continuous flow methodologyhas been used to enhance several steps in the synthesis of a precursor to Sacubitril.

In particular, a key carboethoxyallylation benefited from a reducedprocessing time and improved reproducibility, the latter attributable toavoiding the use of a slurry as in the batch procedure. Moreover, in batchexothermic formation of the organozinc species resulted in the formation ofside products, whereas this could be avoided in flow because heat dissipationfrom a narrow packed column of zinc was more efficient

NEXT EXAMPLE…………….

 

RAFT RAFT (Reversible Addition Fragmentation chain Transfer), a type of controlled radical polymerization, was invented by CSIRO in 1998 but developed in partnership with DuPont over a long term collaboration. Conventional polymerisation is fast but gives a wide distribution of polymer chain lengths. (known as a high polydispersity index ). RAFT is more versatile than other living polymerization techniques, such as atom transfer radical polymerization (ATRP) or nitroxide-mediated polymerization (NMP), it not only leads to polymers with a low polydispersity index and a predetermined molecular weight, but it permits the creation of complex architectures, such as linear block copolymers, comblike, star, brush polymers and dendrimers. Monomers capable of polymerizing by RAFT include styrenes, acrylates, acrylamides, and many vinyl monomers. CSIRO is the owner of the RAFT patents and is actively commercialising the technology. There are 12 licences in force and CSIRO is pursuing interest in a number of fields including human health, agriculture, animal health and personal care. RAFT is the dominant polymerization technique for the creation of polymer-protein or polymer-drug conjugates, permitting (for example) the combination of a polymer exhibiting high solubility with a drug molecule with poor solubility.. Though RAFT can be carried out in batch, it also lends itself to continuous flow processing, as this processing method offers an easy and reproducible scale-up route of the oxygen sensitive RAFT process. The possibility to effectively exclude oxygen using continuous flow reactors in combination with inline degassing methods offers advantages over batch processing at scales beyond the laboratory environment. Challenges associated with the high viscosity of the polymer product solution can be controlled using pressuriseable continuous flow reactor systems. http://www.csiro.au/products/RAFT.html
STR1

Examples………..

Cyclohexaneperoxycarboxylic acid (6,  has been developed as a safe, inexpensive oxidant, with demonstrated utility in a Baeyer−Villiger rearrangement.34 Solutions of cyclohexanecarboxylic acid in hexane and 50% aqueous H2O2 were continuously added to 45% H2SO4 at 50−70 °C and slightly reduced pressure. The byproduct H2O was removed azeotropically, and the residence time in the reactor was 3 h. Processing was adjusted to maintain a concentration of 6 at 17−19%, below the detonable level, and the product was kept as a stable solution in hexane. These operations enhanced the safety margin in preparing 6.

figure

Scheme .  Generation of cyclohexaneperoxycarboxylic acid

Examples………..

Abstract Image

The conversion of a batch process to continuous (flow) operation has been investigated. The manufacture of 4,d-erythronolactone at kilogram scale was used as an example. Fully continuousprocessing was found to be impracticable with the available plant because of the difficulty in carrying out a multiphase isolation step continuously, so hybrid batch–continuous options were explored. It was found that very little additional laboratory or process safety work other than that required for the batch process was required to develop the hybrid process. A hybrid process was chosen because of the difficulty caused by the precipitation of solid byproduct during the isolation stage. While the project was a technical success, the performance benefits of the hybrid process over the batch were not seen as commercially significant for this system.

Multikilogram Synthesis of 4-d-Erythronolactone via Batch andContinuous Processing

Org. Process Res. Dev., 2012, 16 (5), pp 1003–1012

 

Examples………..

Abstract Image

Continuous Biocatalytic Processes

Org. Process Res. Dev., 2009, 13 (3), pp 607–616
Figure
Scheme . Biotransformation of sodium l-glutamate to γ-aminobutyric acid (GABA) by single-step α-decarboxylation with glutamate decarboxylase

PICS…………..

References

  1.  American Iron and Steel Institute
  2.  Benett, Stuart (1986). A History of Control Engineering 1800-1930. Institution of Engineering and Technology. ISBN 978-0-86341-047-5.
  3.  Ziegler, Gregory R.; Aguilar, Carlos A. (2003). “Residence Time Distribution in a Co-rotating, Twin-screw Continuous Mixer by the Step Change Method”. Journal of Food Engineering(Elsevier) 59 (2-3): 1–7.

Sources and further reading

  • R H Perry, C H Chilton, C W Green (Ed), Perry’s Chemical Engineers’ Handbook (7th Ed), McGraw-Hill (1997), ISBN 978-0-07-049841-9
  • Major industries typically each have one or more trade magazines that constantly feature articles about plant operations, new equipment and processes and operating and maintenance tips. Trade magazines are one of the best ways to keep informed of state of the art developments.
Share

Synthesis and Low Temperature Spectroscopic Observation of 1,3,5-Trioxane-2,4,6-Trione: The Cyclic Trimer of Carbon Dioxide

 spectroscopy, SYNTHESIS  Comments Off on Synthesis and Low Temperature Spectroscopic Observation of 1,3,5-Trioxane-2,4,6-Trione: The Cyclic Trimer of Carbon Dioxide
Jun 172016
 
Abstract Image
Abstract Image
Abstract Image

1,3,5-Trioxane-2,4,6-trione (cyclic trimer of CO2) is the product of a four-step synthesis: chlorination of isobutyraldehyde; cyclotrimerization of 2-chloro-2-methylpropanal; dehydochlorination of 2,4,6-tris(2-chloropropan)-2-yl-1,3,5-trioxane; ozonolysis at −80 °C of 2,4,6-tri(propan-2-ylidene)-1,3,5-trioxane. This trioxane-trione is detected in solution at temperatures between −80 to −40 °C, and its conversion to CO2 is monitored by 13C NMR and FTIR. The CO2 trimer has a half-life of approximately 40 min at −40 °C.

As a product of combustion and respiration whose accumulation in the atmosphere has become a cause for significant concern, carbon dioxide has been the subject of much research directed at its reutilization. Various approaches toward this CO2 reutilization goal have been described in excellent reviews over the past two decades.Important processes involve reduction with hydrogen,coupling with other small molecules, incorporation into polymers and artificial photosynthesis. The main products include fuels, solvents, chemical intermediates and polymers.
The efficiency of these commercial processes in terms of reagent usage is relatively low with respect to the fraction of CO2 incorporated into the product; the highest being for urea (57%), and decreasing for salicylic acid (36%) and methanol (10%). This could be raised to 100% if a CO2 self-fixation chemistry could be developed. Ideally with a sufficient input of energy, CO2 would react with itself to yield a liquid or solid product from which this energy could be extracted when needed for useful work. Such chemistry has been the subject of theoretical calculation for structures representing the linear polymer and cyclic oligomers of CO2.
With respect to thermodynamic stability, the cyclic trimer has been described as “feasible” although energetically less stable than three CO2 molecules by 27 kJ/mol per CO2 unit.(10)Regarding kinetic stability of the cyclic trimer toward fragmentation to CO2, calculated barriers for this decomposition have ranged from activation energies of 61 to 172 kJ/mol depending on the computational method with calculated half-lives ranging from days to milliseconds at ambient conditions and substantially longer at lower temperatures.
 The cyclic trimer of CO2has also been proposed as a low-energy intermediate in the transformation of CO2 to an extended solid.
The formation of an orthocarbonate extended covalent structure of interconnected six-membered rings was predicted by model calculation with the finding of a stabilization energy that increased with molecular size. Later experimental work found under extreme pressure/temperature (40 GPa/1800 K), CO2 will transform to a metastable extended solid which has been characterized as a Phase V form of CO2 with a sigma bonded quartz-like structure.
 It has also been proposed that sorption of CO2 into the isolated nanoscale confined spaces of sulfur- or nitrogen-treated porous carbon at 30 bar pressure can produce a polymeric structure of carbon dioxide as has been reported for other molecules in nanoconfined spaces.
The 1,3,5-trioxane-2,4,6-trione structure of the CO2 cyclic trimer, 1, may represent an important intermediate or product in the self-fixation of gaseous CO2. Theoretical studies on this molecule have indicated a possibility of kinetic stability at room temperature and as well as a possibility for it to be thermodynamically feasible.To date, no experimental evidence has been reported for its existence. The objective of this work is to synthesize compound 1 and to make an assessment of its stability. The approach is that of a model compound synthesis where the trioxane ring is first generated from substituted aldehydes and then the peripheral carbonyl structures are incorporated at low temperature in the final step. As will be shown, compound 1does not possess the stability for facile isolation and storage

Synthesis and Low Temperature Spectroscopic Observation of 1,3,5-Trioxane-2,4,6-Trione: The Cyclic Trimer of Carbon Dioxide

Chemistry Division, Naval Research Laboratory, Washington, D. C. 20375, United States
§Mettler-Toledo AutoChem, Inc., Columbia, Maryland 21046, United States
J. Org. Chem., Article ASAP
DOI: 10.1021/acs.joc.6b00647
ACS Editors’ Choice – This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
Figure
 Figure

2,4,6-Tri(propan-2-ylidene)-1,3,5-trioxane (2a)

 crude product was purified by vacuum distillation (10 mmHg at 185 °C) to yield the title compound as a colorless liquid (2.32 g, 71%). 1H NMR (CDCl3, 300 MHz) δ = 1.63 (s, 18 H,) ppm; 13C NMR (CDCl3, 75 MHz) δ = 15.0, 86.9, 144.7 ppm; IR νmax (liquid) 2991, 2919, 2863, 1726, 1284, 1212 cm–1; UV (CH3CN) λmax = 210 nm (ε = 1.57 × 104 L/mol·cm); HRMS (ESI) m/z calcd for C12H18O3 [M + H]+ 211.1334, found 211.1342. Anal. Calcd for C12H18O3: C, 68.54; H, 8.68; O, 22.83. Found: C, 68.48; H; 8.76.

str1

str1

str1

/////////Synthesis, Low Temperature,  Spectroscopic Observation, of 1,3,5-Trioxane-2,4,6-Trione,  The Cyclic Trimer,  Carbon Dioxide

 

EXTRAS

1,3,5-Trioxane

 

1,3,5-Trioxane, sometimes also calledtrioxane or trioxin, is a chemicalcompound with molecular formula CHO. It is a white solid with a chloroform-like odor. It is a stable cyclictrimer of formaldehyde, and one of the three trioxaneisomers; its molecular backbone consists of a six-membered ring with three carbon atoms alternating with three oxygen atoms. Thus, cyclotrimerization of formaldehyde affords 1,3,5-trioxane:

The mechanism can be explained in an acidic catalyzed reaction:

Uses

In chemistry, 1,3,5-trioxane is used as a stable, easily handled source of anhydrousformaldehyde. In acidic solutions, it decomposes to generate three molecules of formaldehyde. It may also be used in polymerization to form acetal resins, such aspolyoxymethylene plastic. It is a feedstock for certain types of plastic, is an ingredient in some solid fuel tablet formulas, and is used in chemical laboratories as a stable source of formaldehyde.

Trioxane is combined with hexamine and compressed into solid bars to makehexamine fuel tablets, used by the military and outdoorsmen as a cooking fuel.

1,3,5-Trioxane is a mortician‘s restorative chemical that maintains the corpse’s contours after postmortem tissue constriction.

Share

Concise Cu (I) Catalyzed Synthesis of Substituted Benzofurans via a Tandem SNAr/C–O Coupling Process

 PROCESS, spectroscopy, SYNTHESIS  Comments Off on Concise Cu (I) Catalyzed Synthesis of Substituted Benzofurans via a Tandem SNAr/C–O Coupling Process
Jun 032016
 
Abstract Image

A novel and convergent approach to tetrasubstituted benzofurans was developed from ortho-bromo aryl fluorides and keto-amides via one-pot SNAr displacement and subsequent Cu(I) catalyzed C–O coupling on the ortho-bromide. The scope of this methodology was demonstrated on several similar substrates.

STR1

Concise Cu (I) Catalyzed Synthesis of Substituted Benzofurans via a Tandem SNAr/C–O Coupling Process

Zhiguo J. Song*et al
Department of Process Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway New Jersey 07065, United States
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.6b00141
Publication Date (Web): May 25, 2016
Copyright © 2016 American Chemical Society
Benzofurans are important building blocks for the synthesis of biologically active compounds in the pharmaceutical industry and compound 3 has been an important intermediate in Merck’s hepatitis C program.(1, 2)

1 as a pale yellow solid (3.1 kg, 86% yield, 98.8% LACP). Mp: > 240 °C.

1H NMR (400 MHz, DMSO-d6)δ 8.54 (d, J = 4.5 Hz, 1H), 8.07 (s, 1H), 8.07–7.94 (m, 3H), 7.42 (t, J = 8.9 Hz, 2H), 3.34 (s, 3H), 3.22 (d, J = 4.1 Hz, 3H), 2.85 (d, J = 4.6 Hz, 3H);13C NMR (100 MHz, DMSO-d6) δ 26.2, 38.2, 112.8, 113.4, 115.9 (d, J = 22 Hz), 119.7, 124.2, 125.2, 128.7, 129.6 (d, J = 8.8 Hz), 136.9, 151.8, 154.4, 162.4, 162.9 (d, J = 247.1 Hz).

19F NMR (376 MHz DMSO-d6) δ 109.9

AHR-FAB-MS calcd for C18H16BrFN2O4S: MH+, 455.2980. Found: 455.0055 (MH+).

  1. (a) Burns, C. J., Del Vecchio, A. M., Bailey, T. R., Kulkarni, B. A., Faitg, T. H., Sherk, S. R., Black-Ledge,C. W., Rys, D. J., Lessen, T. A., Swestock, J., Deng, Y., Nitz, Theodore, J., Reinardt, J. A., Feng, H., andSaha, A. K. Patent WO 2004041201.

    (b) McComas, C. C., Liverton, N. J., Habermann, J., Koch, U.,Narjes, F., Li, P., Peng, X., Soll, R., and Wu, H. WO 2011106929.

    (c) McComas, C. C., Liverton, N. J., Soll,R., Li, P., Peng, X., and Wu, H. WO 2011106986.

    (d) McComas, C. C., Liverton, N. J., Soll, R., Li, P.,Peng, X., Wu, H., Narjes, F., Habermann, J., Koch, U., and Liu, S. WO 2011106992.

    (e) McComas, C. C.,Liverton, N. J., Habermann, J., Koch, U., Narjes, F., Li, P., Peng, X., Soll, R., Wu, H., Palani, A., He, S.,Dai, X., Liu, H., Lai, Z., London, C., Xiao, D., zorn, N., and Nargund, R. WO 2013033971.

  2. He, S.; Li, P.; Dai, X.; McComas, C. C.; Du, C.; Wang, P.; Lai, Z.; Liu, H.; Yin, J.; Bulger, P. G.; Dang, Q.;Xiao, D.; Zorn, N.; Peng, X.; Nargund, R. P.; Palani, A. Tetrahedron Lett. 2014, 55, 22122216, DOI: 10.1016/j.tetlet.2014.02.051

//////Concise Cu (I),  Catalyzed,  Synthesis, Substituted Benzofurans, Tandem SNAr/C–O Coupling Process

Share

Intensified biocatalytic production of enantiomerically pure halophenylalanines from acrylic acids using ammonium carbamate as the ammonia source

 PROCESS, spectroscopy, SYNTHESIS  Comments Off on Intensified biocatalytic production of enantiomerically pure halophenylalanines from acrylic acids using ammonium carbamate as the ammonia source
Jun 012016
 

Catal. Sci. Technol., 2016, Advance Article
DOI: 10.1039/C6CY00855K, Communication
Nicholas J. Weise, Syed T. Ahmed, Fabio Parmeggiani, Elina Siirola, Ahir Pushpanath, Ursula Schell, Nicholas J. Turner
An industrial-scale method employing a phenylalanine ammonia lyase enzyme

 

Intensified biocatalytic production of enantiomerically pure halophenylalanines from acrylic acids using ammonium carbamate as the ammonia source

*Corresponding authors
aManchester Institute of Biotechnology & School of Chemistry, University of Manchester, 131 Princess Street, Manchester, UK
E-mail: nicholas.turner@manchester.ac.uk
bJohnson Matthey Catalysts and Chiral Technologies, 28 Cambridge Science Park, Milton Road, Cambridge, UK
Catal. Sci. Technol., 2016, Advance Article

DOI: 10.1039/C6CY00855K

SEE

An intensified, industrially-relevant strategy for the production of enantiopure halophenylalanines has been developed using the novel combination of a cyanobacterial phenylalanine ammonia lyase (PAL) and ammonium carbamate reaction buffer. The process boasts STYs up to >200 g L−1 d−1, ees ≥ 98% and simplified catalyst/reaction buffer preparation and work up.

 

STR1

 

STR1

STR1

 

STR1

///////Intensified,  biocatalytic production, enantiomerically pure,  halophenylalanines,  acrylic acids,  ammonium carbamate, ammonia source

Share

Eosin Y catalyzed difunctionalization of styrenes using O2 and CS2: a direct access to 1,3-oxathiolane-2-thiones

 spectroscopy, SYNTHESIS  Comments Off on Eosin Y catalyzed difunctionalization of styrenes using O2 and CS2: a direct access to 1,3-oxathiolane-2-thiones
May 212016
 

Green Chem., 2016, Advance Article
DOI: 10.1039/C6GC00924G, Paper
Arvind K. Yadav, Lal Dhar S. Yadav
An efficient, one-pot, highly regioselective synthesis of 1,3-oxathiolane-2-thiones from styrenes, CS2, atmospheric O2 and visible light is reported.

Eosin Y catalyzed difunctionalization of styrenes using O2 and CS2: a direct access to 1,3-oxathiolane-2-thiones

http://pubs.rsc.org/en/Content/ArticleLanding/2016/GC/C6GC00924G?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract

Paper

Eosin Y catalyzed difunctionalization of styrenes using O2 and CS2: a direct access to 1,3-oxathiolane-2-thiones

*Corresponding authors
aGreen Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad-211002, India
E-mail: ldsyadav@hotmail.com
Fax: +91 5322460533
Tel: +91 5322500652
Green Chem., 2016, Advance Article

DOI: 10.1039/C6GC00924G

Visible light promoted straightforward highly regioselective synthesis of 1,3-oxathiolane-2-thiones (cyclic dithiocarbonates) starting directly from styrenes, CS2 and air (O2) is reported. The protocol utilizes eosin Y as an organophotoredox catalyst and clean resources like visible light and air (O2) as sustainable reagents at room temperature in a one-pot procedure. Additionally, the approach is advantageous in terms of step economy as it skips the prefunctionalization of styrenes to oxiranes, which has been inevitable in commonly used syntheses of 1,3-oxathiolane-2-thiones.

 

str1

//////////Eosin Y,  catalyzed,  difunctionalization, styrenes,  O2,  CS2, 1,3-oxathiolane-2-thiones

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: