AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

Amelioration of diethylnitrosamine (DEN)-induced hepatocellular carcinogenesis in animal models via knockdown oxidative stress and proinflammatory markers by Madhuca longifolia embedded silver nanoparticles

 nanotechnology, Uncategorized  Comments Off on Amelioration of diethylnitrosamine (DEN)-induced hepatocellular carcinogenesis in animal models via knockdown oxidative stress and proinflammatory markers by Madhuca longifolia embedded silver nanoparticles
Jun 122018
 

str1

Amelioration of diethylnitrosamine (DEN)-induced hepatocellular carcinogenesis in animal models via knockdown oxidative stress and proinflammatory markers by Madhuca longifolia embedded silver nanoparticles

http://pubs.rsc.org/en/content/articlepdf/2018/ra/c7ra12775h

DOI: 10.1039/c7ra12775h

rsc.li/rsc-advances

RSC Adv., 2018, 8, 6940–6953

Deepika Singh, a Manvendra Singh,b Ekta Yadav,a Neha Falls,a Ujendra Komal,c Deependra Singh Dangi,d Vikas Kumare and Amita Verma*f

 

Department of Pharmaceutical Science, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India

b HMFA Institute of Engineering & Technology, Handia, Allahabad, 211007, India

c Department of Mechanical & Industrial Engineering, Indian Institute of Technology, Roorkee, Uttrakhand, India

d Kinapse India Scientic Services Pvt. Ltd., Gurgoan, Haryana, India

e Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India

f Bio-organic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad – 211007, Uttar Pradesh, India.

E-mail: amitaverma.dr@gmail.com; amita.verma@shiats.edu.in

 

In hepatocellular carcinoma (HCC), primary liver cancer is primarily responsible for inflammation-related cancer as more than 90% of HCCs emerge with regard to hepatic damage and inflammation. Tenacious inflammation is known to advance and intensify liver tumours. Nanomaterials, for example, silver nanoparticles synthesized from plant-derived materials have shown great outcomes in reducing the precancerous nodules and have anticancer properties. The aim of the present investigation was to biosynthesize, characterize and evaluate the anticancer activity of nanoparticles-embedded Madhuca longifolia extract (MLAgNPs) on an experimental model of hepatic cancer in rats. M. longifolia contains a high amount of flavonoids and other phenolic derivative. The silver nanoparticles synthesized by M. longifolia were characterized by various instruments, including UV-Vis spectrophotometry, X-ray beam diffraction, field-emission scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy and Fourier transform infrared spectroscopy. Liver cancer was induced to 36 Wistar rats by a single dose of diethylnitrosamine (DEN) (200 mg kg1 BW). Hepatic cancer by MLAgNPs dose-dependently limited macroscopical variation compared with the DEN-induced hepatic cancer groups. The serum and liver were taken to measure the antioxidant parameters, proinflammatory cytokines and for a histopathological study. Serum hepatic and serum non-hepatic along with inflammatory cytokines were also assessed. Reduction in the levels of proinflammatory cytokines, namely tumour necrosis factor-a, interleukin-6, interleukin-1b, nuclear factor kappa beta (NF-kB), and improved membrane-bound enzyme activity were also detected. It was found that minor morphological anomalies were identified in the histopathology analysis in the MLAgNPs-treated groups. It could be concluded that silver nanoparticles introduce an extraordinary potential for use as adjuvants in hepatic cancer treatment because of their antioxidant abilities and ability to diminish inflammation in liver tissue by attenuating the NF-kB pathway.

Conclusion Our outcomes have demonstrated that the bioengineered silver nanoparticles of M. longifolia leaves extract cause in vitro and in vivo apoptosis of hepatic cancer through an ROS pathway and are promising agents in liver carcinogenesis.

 

AMITA

DR AMITA VERMA

Bio-organic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad – 211007, Uttar Pradesh, India.

E-mail: amitaverma.dr@gmail.com; amita.verma@shiats.edu.in

 

Sam Higginbottom University of Agriculture, Technology and Sciences

 

//////////////

Share

Applications and perspectives of nanomaterials in novel vaccine development

 nanotechnology, VACCINE  Comments Off on Applications and perspectives of nanomaterials in novel vaccine development
Dec 112017
 

 

Applications and perspectives of nanomaterials in novel vaccine development

Med. Chem. Commun., 2018, Advance Article
DOI: 10.1039/C7MD00158D, Review Article
Yingbin Shen, Tianyao Hao, Shiyi Ou, Churan Hu, Long Chen
Vaccines show great potential for both prophylactic and therapeutic use in infections, cancer, and other diseases

Applications and perspectives of nanomaterials in novel vaccine development

* Corresponding authors

Abstract

Vaccines show great potential for both prophylactic and therapeutic use in infections, cancer, and other diseases. With the rapid development of bio-technologies and materials sciences, nanomaterials are playing essential roles in novel vaccine formulations and can boost antigen effectiveness by operating as delivery systems to enhance antigen processing and/or as immune-potentiating adjuvants to induce or potentiate immune responses. The effect of nanoparticles in vaccinology showed enhanced antigen stability and immunogenicity as well as targeted delivery and slow release. However, obstacles remain due to the lack of fundamental knowledge on the detailed molecular working mechanism and in vivo bio-effects of nanoparticles. This review provides a broad overview of the current improvements in nanoparticles in vaccinology. Modern nanoparticle vaccines are classified by the nanoparticles’ action based on either delivery system or immune potentiator approaches. The mechanisms of interaction of nanoparticles with the antigens and the immune system are discussed. Nanoparticle vaccines approved for use are also listed. A fundamental understanding of the in vivo bio-distribution and the fate of nanoparticles will accelerate the rational design of new nanoparticles comprising vaccines in the future.

Image result for Department of Food Science and Engineering, School of Science and Engineering, Jinan University

Department of Food Science and Engineering, School of Science and Engineering, Jinan University

//////////////nanomaterials, vaccine

Share

REFLECTION PAPER ON NANOTECHNOLOGY-BASED MEDICINAL PRODUCTS FOR HUMAN USE

 nanotechnology, Uncategorized  Comments Off on REFLECTION PAPER ON NANOTECHNOLOGY-BASED MEDICINAL PRODUCTS FOR HUMAN USE
Aug 182014
 

Nanotechnology

Nanotechnology is the use of tiny structures – less than 1,000 nanometres across – that are designed to have specific properties. Nanotechnology is an emerging field in science that is used in a wide range of applications, from consumer goods to health products.

 

In medicine, nanotechnology has only partially been exploited. It is being investigated as a way to improve the properties of medicines, such as their solubility or stability, and to develop medicines that may provide new ways to:

  • deliver medicines to the body;
  • target medicines in the body more accurately;
  • diagnose and treat diseases;
  • support the regeneration of cells and tissues.

Activities at the European Medicines Agency 

The European Medicines Agency follows the latest developments in nanotechnology that are relevant to the development of medicines. Recommendations from the Agency’sCommittee for Medicinal Products for Human Use (CHMP) have already led to the approval of a number of medicines based on nanotechnology. These include medicines containing:

 

  • liposomes (microscopic fatty structures containing the active substance), such asCaelyx (doxorubicin), Mepact (mifamurtide) and Myocet (doxorubicin);
  • nano-scale particles of the active substance, such as Abraxane (paclitaxel), Emend(aprepitant) and Rapamune (sirolimus).

The development of medicines using newer, innovative nanotechnology techniques may raise new challenges for the Agency in the future. These include discussions on whether the current regulatory framework is appropriate for these medicines and whether existing guidelines and requirements on the way the medicines are assessed and monitored are adequate.

The Agency also needs to consider the acceptability of new testing methods and the availability of experts to guide the Agency’s opinion-making.

 

An overview of the initiatives taken by European Union (EU) regulators in relation to the development and evaluation of nanomedicines and nanosimilars was published in the scientific journal Nanomedicines. The article describes the regulatory challenges and perspectives in this field:

Ad hoc expert group on nanomedicines

In 2009, the CHMP established an ad hoc expert group on nanomedicines.

This group includes selected experts from academia and the European regulatory network, who support the Agency’s activities by providing specialist input on new scientific knowledge and who help with the review of guidelines on nanomedicines. The group also helps the Agency’s discussions with international partners on issues concerning nanomedicines.

The group held the first ad hoc expert group meeting on nanomedicines on 29 April 2009.

 

Reflection papers on nanomedicines

In 2011, the CHMP began to develop in 2011 a series of four reflection papers on nanomedicines to provide guidance to sponsors developing nanomedicines.

These documents cover the development both of new nanomedicines and of nanosimilars (nanomedicines that are claimed to be similar to a reference nanomedicine), since the first generation of nanomedicines, including liposomal formulations, iron-based preparations and nanocrystal-based medicines, have started to come off patent:

The fourth document, a draft reflection paper on the data requirements for intravenous iron-based nanocolloidal products developed with reference to an innovator medicine, will be released for a six-month public consultation in 2013.

International workshops on nanomedicines

The Agency organises workshops on nanomedicines to explore the scientific aspects of nanomedicines and enable the sharing of experience at an international level, in order to assist future developments in the field:

REFLECTION PAPER ON NANOTECHNOLOGY-BASED MEDICINAL PRODUCTS FOR
HUMAN USE

http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2010/01/WC500069728.pdf

Related information

 

Share

Synthesis of water-soluble β-NaYF4 nanocrystals in a green way

 nanotechnology  Comments Off on Synthesis of water-soluble β-NaYF4 nanocrystals in a green way
Jul 032014
 

Graphical abstract: Synthesis of water-soluble β-NaYF4 nanocrystals in a green way

http://pubs.rsc.org/en/Content/ArticleLanding/2014/CE/C4CE00643G?utm_medium=email&utm_campaign=pub-CE-vol-16-issue-29&utm_source=toc-alert#!divAbstract

Pure β-NaYF4 nanocrystals with a hexagonal phase were synthesized in a novel way at low temperature using sparingly soluble rare-earth salts as precursors and ethanol–water as the solvent. The phase of the products could be controlled by adjusting the water content. An up-converting aqueous colloidal solution and a transparent film were obtained through a simple post-treatment.

 

Synthesis of water-soluble β-NaYF4 nanocrystals in a green way

Show Affiliations
Hide Affiliations
*Corresponding authors
aMOE Key Laboratory of Bioinorganic and Synthetic Chemistry/State Key Laboratory of Optoelectronic Materials and Technology, Key Laboratory of Environment and Energy Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
E-mail: ceswmm@mail.sysu.edu.cn;
Fax: +86 20 84111038
bDepartment of Chemistry, University of Toronto, 80 St George Street, Toronto, Canada M5S 3H6
E-mail: gozin@chem.utoronto.ca
CrystEngComm, 2014,16, 6526-6529

DOI: 10.1039/C4CE00643G

Share

MIT chemists design nanoparticles that can deliver three cancer drugs at a time.

 cancer, nanotechnology  Comments Off on MIT chemists design nanoparticles that can deliver three cancer drugs at a time.
Apr 222014
 

 

MIT chemists design nanoparticles that can deliver three cancer drugs at a time.

Delivering chemotherapy drugs in nanoparticle form could help reduce side effects by targeting the drugs directly to the tumors. In recent years, scientists have developed nanoparticles that deliver one or two chemotherapy drugs, but it has been difficult to design particles that can carry any more than that in a precise ratio.

Now MIT chemists have devised a new way to build such nanoparticles, making it much easier to include three or more different drugs. In a paper published in the Journal of the American Chemical Society, the researchers showed that they could load their particles with three drugs commonly used to treat ovarian cancer.

read at
TECHNOLOGYREVIEW.COM

 

Share

Nanoparticles Deliver Three Cancer Drugs To Tumors Drug Delivery: Polymeric materials deliver specific amounts of multiple drugs to disease cells

 nanotechnology  Comments Off on Nanoparticles Deliver Three Cancer Drugs To Tumors Drug Delivery: Polymeric materials deliver specific amounts of multiple drugs to disease cells
Apr 212014
 
Graphic show that a nanoparticle with cisplatin core (green) is formed by polymerization of doxorubicin- and camptothecin-derivatized monomers and a cisplatin cross-linker.

CANCER KILLER
A drug-delivering nanoparticle with cisplatin core (green) is formed by polymerization of doxorubicin- and camptothecin-derivatized monomers and a cisplatin cross-linker.
The first polymer nanoparticles that carry a defined ratio of three cancer drugs and release them with three independent triggering mechanisms have been developed. The approach could provide a new way of delivering specific amounts of multiple drugs to patients and could help researchers optimize doses of such combination therapies.
The drug delivery nanoparticles were developed by Jeremiah A. Johnson of MIT and coworkers (J. Am. Chem. Soc. 2014, DOI: 10.1021/ja502011g).
read all this at
Share

Formulation Development of Insoluble Drugs

 drugs, GENERIC, MANUFACTURING, nanotechnology  Comments Off on Formulation Development of Insoluble Drugs
Oct 152013
 

Formulation development of insoluble drugs has always been a challenge in pharmaceutical development. This presentation reviews some current options to old problem.

PharmaDirections, Inc.

by , Working at PharmaDirections, Inc

Share

Iron Oxide Nanoparticles Show the Way

 nanotechnology  Comments Off on Iron Oxide Nanoparticles Show the Way
Jul 262013
 

Iron oxide nanoparticles precisely direct stem cells to damage tissues, thereby increasing their therapeutic potential

Read more

http://www.chemistryviews.org/details/news/5039301/Iron_Oxide_Nanoparticles_Show_the_Way.html

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: