AUTHOR OF THIS BLOG

DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER

A monolith immobilised iridium Cp* catalyst for hydrogen transfer reactions under flow conditions

 SYNTHESIS  Comments Off on A monolith immobilised iridium Cp* catalyst for hydrogen transfer reactions under flow conditions
Jan 082015
 

Graphical Abstract

http://pubs.rsc.org/en/Content/ArticleLanding/2015/OB/C4OB02376E#!divAbstract

A monolith immobilised iridium Cp* catalyst for hydrogen transfer reactions under flow conditions

*Corresponding authors
aDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
bDepartment of Chemistry, University of Durham, South Road, Durham, UK
Org. Biomol. Chem., 2015, Advance Article

DOI: 10.1039/C4OB02376E

An immobilised iridium hydrogen transfer catalyst has been developed for use in flow based processing by incorporation of a ligand into a porous polymeric monolithic flow reactor. The monolithic construct has been used for several redox reductions demonstrating excellent recyclability, good turnover numbers and high chemical stability giving negligible metal leaching over extended periods of use.
info…………….
Insights into the iridium-catalyzed water oxidation mechanism from a DFT study

Dr. David Balcells, Prof. Odile Eisenstein, Prof. Robert H Crabtree, Agusti Lledos Departament de Quimica, Universitat Autonoma de Barcelona, Bellaterra, Spain; Institut Charles Gerhardt, Universite Montpellier 2, Montpellier, France; Department of Chemistry, Yale University, New Haven, United States

The development of a new energy model is a major challenge in modern chemistry. The climate change and the raise of oil prices prompt the development of clean and cheap energy resources. In this field, artificial photosynthesis is one of the most promising solutions.1 The catalytic oxidation of water to dioxygen is a fundamental part of this process. The mononuclear iridium complex Cp*Ir(ppy)(Cl) (ppy = phenylpyridine) is one of the most efficient catalysts reported for this reaction (Figure).2 DFT calculations support the oxo complex Cp*IrO(ppy) as the active species. The electronic structure of this complex is characterized by having the antibonding p*(Ir=O) orbitals half-occupied. The calculations suggest that the reaction mechanism consists of an intermolecular attack of water to the oxo ligand. This reaction involves the formation of the O-O bond and a proton transfer, which is assisted by the molecules of water solvating the catalyst.

Figure. Iridium-catalyzed water oxidation.

References
(1) Hammarström, L.; Hammes-Schiffer, S. Acc. Chem. Res. 200942, 1859-1860.
(2) Hull, J. F.; Balcells, D.; Blakemore, J. D.; Incarvito, C. D.; Eisenstein, O.; Brudvig, G. W.; Crabtree, R. H. J. Am. Chem. Soc.2009, 131, 8730-8731.

more info………….
The water-soluble iridium complex {Cp*Ir[6,6′-(OH)2bpy](H2O)}[OTf]2(Cp*=η5-pentamethylcyclopentadienyl, bpy=2,2′-bipyridine) was found to be a general and highly efficient catalyst for the N-alkylation of the poor nucleophilic sulfonamides with alcohols as alkylating agents in water. The presence of OH units in the bpy ligand is crucially important for the catalytic activity of the iridium complex. Mechanistic investigations revealed that the catalytically active species is a ligand-metal bifunctional iridium complex bearing an N,N′-chelated 2,2′-bipyridinated ligand and an aqua ligand. Notably, the present catalytic system and the proposed mechanism provide a new horizon and scope for the development of “hydrogen autotransfer (or hydrogen-borrowing) processes”.

The N-Alkylation of Sulfonamides with Alcohols in Water Catalyzed by the Water-Soluble Iridium Complex {Cp*Ir[6,6′-(OH)2bpy](H2O)}[OTf]2

  1. Panpan Qu,
  2. Chunlou Sun,
  3. Juan Ma and
  4. Feng Li*

Article first published online: 13 JAN 2014

DOI: 10.1002/adsc.201300711

http://onlinelibrary.wiley.com/doi/10.1002/adsc.201300711/abstract

 

 

 

 

http://www.beilstein-journals.org/bjoc/single/articleFullText.htm?publicId=1860-5397-9-110

 

 

Functionalized carbenes

http://www.itqb.unl.pt/news/generating-new-catalysts

Share

Diastereoselective [2+2] Photocycloaddition of a Chiral Cyclohexenone with Ethylene in a Continuous Flow Microcapillary Reactor

 SYNTHESIS  Comments Off on Diastereoselective [2+2] Photocycloaddition of a Chiral Cyclohexenone with Ethylene in a Continuous Flow Microcapillary Reactor
Jan 082015
 

The diastereoselective [2+2] photocycloaddition of ethylene to a chiral cyclohexenone was studied in a continuous flow microcapillary reactor. In all cases examined, the microcapillary reactor gave higher conversions and selectivity than the batch system, even after shorter irradiation times. These findings were explained by the superior temperature control, favorable light penetration, and generation of a gas–liquid slug flow with improved mass transfer in the microreactor.

Diastereoselective [2+2] Photocycloaddition of a Chiral Cyclohexenone with Ethylene in a Continuous Flow Microcapillary Reactor

http://www.akademiai.com/content/03163u0p80225v14/?p=bb18d4ec7c044f5c80013806493e8850&pi=2

Journal of Flow Chemistry
Publisher Akadémiai Kiadó
ISSN 2062-249X (Print)
2063-0212 (Online)
Subject Flow Chemistry
Issue Volume 2, Number 3/September 2012
Pages 73-76
DOI 10.1556/JFC-D-12-00005
Authors

 

Kimitada Terao1, Yasuhiro Nishiyama1, Hiroki Tanimoto1, Tsumoru Morimoto1, Michael Oelgemöller2, Kiyomi Kakiuchi1 Email for kakiuchi@ms.naist.jp

kakiuchi@ms.naist.jp, http://mswebs.naist.jp/LABs/kakiuchi/member/staff/CV_kakiuchi.pdf

1Nara Institute of Science and Technology (NAIST) Graduate School of Materials Science 8916-5 Takayama-cho, Ikoma Nara 630-0192 Japan
2James Cook University School of Pharmacy and Molecular Sciences Townsville QLD 4811 Australia

 

more………..

http://mswebs.naist.jp/LABs/kakiuchi/achevement/paper.htm

“Novel Enhancement of Diastereoselectivity of [2+2] Photocycloaddition of
Chiral Cyclohexenones to Ethylene by Adding Naphthalenes”

Ken Tsutsumi, Hiroaki Nakano, Akinori Furutani, Katsunori Endou, Abdurshit Merpuge
Takuya Shintani, Tsumoru Morimoto, Kiyomi Kakiuchi
J. Org. Chem. 200469, 3, 785-789.

 

“Diastereoselective [2+2] Photocycloaddition of Polymer-Supported
Cyclic Chiral Enone with Ethylene”

Takuya Shintani, Kazunori Kusabiraki, Atsuko Hattori, Akinori Furutani, Ken Tsutsumi,
Tsumoru Morimoto, Kiyomi Kakiuchi
Tetrahedron Lett. 200445, 9, 1849-1851.

 

“Diastereoselective [2+2] Photocycloaddition of Cyclohexenone Derivative with Olefines in Supercritical Carbon Dioxide
Yasuhiro Nishiyama, Kazuya Nakatani, Hiroki Tanimoto, Tsumoru Morimoto, Kiyomi Kakiuchi
J. Org. Chem. 201378, 7186-7193.

Highlighted in 
ChemInform 
201344(44)

 

 

“Diastereoselective [2+2] Photocycloaddition of Chiral Cyclic Enones with Olefins in Aqueous Media Using Surfactants”
Yasuhiro Nishiyama, Mikiko Shibata, Takuya Ishii, Tsumoru Morimoto, Hiroki Tanimoto,
Ken Tsutsumi, Kiyomi Kakiuchi
Molecules, 2013, 18, 1626-1637.

 

 

“Highly diastereodifferentiating and regioselective [2+2]-photoreactions using methoxyaromatic menthyl cyclohexenone carboxylates”
Inga Inhulsen, Naoya Akiyama, Ken Tsutsumi, Yasuhiro Nishiyama, Kiyomi Kakiuchi

Tetrahedron 2013, 69, 782-790.

 

“Diastereodifferentiating [2+2] Photocycloaddition of Chiral Cyclohexenone Carboxylates with Cyclopentene by a Microreactor”
Kimitada Terao, Yasuhiro Nishiyama, Shin Aida, Hiroki Tanimoto, Tsumoru Morimoto,
Kiyomi Kakiuchi
J. Photochem. Photobiol. A: Chem. 2012242, 13-19.

Share

Oleocanthal for treating pain

 Uncategorized  Comments Off on Oleocanthal for treating pain
Jan 062015
 

“Oleocanthal” is specifically deacetoxydialdehydic ligstroside aglycone, which exists as a single isomer (enantiomer). The (-)-enantiomer is the natural product and has the following chemical formula:

http://www.google.com/patents/EP2583676A1?cl=en

The Trustees of The University of Pennsylvania,

Monell Chemical Senses Center,

Russell S. J. Keast, Qiang Han, Amos B. Smith Iii, Gary K. Beauchamp, Paul A. S. Breslin, Jianming Lin,

  • In 1993, Montedoro and co-workers reported the isolation of a new class of phenolic compounds (1-4), including the dialdehydic and aldehydic forms of ligstroside (5) and oleuropeine (6) from virgin olive oils (Montedoro, G. et al. (1993) J. Agric. Food Chem. 41:2228-2234) (See Figure 1 for structures). These phenolic compounds comprise important minor constituents of virgin olive oils that have been implicated in the organoleptic characteristics including bitterness, pungency, and astringency (Andrewes, P. et al. (2003) J. Agric. Food Chem. 57:1415-1420 ).
  • In addition, these agents have been suggested to contribute to the oxidative stability of virgin olive oil and as such are associated with health benefits of olive oils, specifically their antioxidant/anticancer activities (Owen, R.W. et al. (2000) Food Chem. Toxicology 38:647-659; Owen, R.W. et al. (2000) Eur. J. Cancer 36(10):1235-1247; Baldioli, M. et al. (1996) J. Am. Oil Chem. Soc. 73(11):1589-1593; Manna, C. et al. (2002) J. Agric. Food Chem. 50(22):6521-6526).
  • Similar structural features have been reported in the constituents of the Jasminum (Somanadhan, B. et al. (1998) Planta Medica 64:246-50; Takenaka, Y. et al. (2002) Chem. & Pharm. Bull 50(3):384-389) and related plant species (Takenaka, Y. et al. (2002) Phytochemistry 59(7):779-787). It has been shown that both ibuprofen and a Mediterranean diet (i.e., high in olive oil) both decrease the risk/incidence for breast and lung cancer.
  • In 2003, Busch and co-workers at Unilever Research and Development Vlaardingen (The Netherlands) identified deacetoxydialdehydic ligstroside aglycone as a principal contributor to the potent pungent (burning) sensation at the back of throat associated with high quality virgin olive oils (Andrewes, P. et al. (2003) J. Agric. Food Chem. 57:1415-1420). Studies at Firmenich, Inc., reached the same conclusion (Firmenich, Inc. study). The structure of 1 was assigned,

    employing a series of 1 and 2D NMR experiments (Andrewes, P. et al. (2003) J. Agric. Food Chem. 57:1415-1420), in conjunction with comparison to literature data (Montedoro, G. et al. (1993) J. Agric. Food Chem. 41:2228-2234). The absolute stereochemistry remained undetermined. That 1 was responsible for the strong pungent (burning) sensation at the back of the throat was based on an extensive series of HPLC fraction analysis, omission analysis and correlation, and hydrolysis studies, in conjunction with human sensory studies. Andrewes et al., however, acknowledged that “a coelution compound causing the burning sensation” could not be eliminated without completing a synthesis of 1, which they stated to be “extremely challenging.”

EXAMPLES

 

Example 1: Isolation of deacetoxydialdehydic ligstroside aglycone “Oleocanthal”A. Synthesis of Oleocanthal

  • Retrosynthetically, we envisioned both enantiomers of (1) to derive from the enantiomeric forms of cyclopentanediols (7) via oxidative cleavage of the diol moiety (Scheme 1). The requisite cyclopentanediols (7) in turn would be prepared from cyclopentanones (+)- and (-)-(10), via alkylation to introduce stereoselectively the side chain from the convex face, followed by stereoselective Wittig ethylnation and removal of the acetonide moiety (Scheme 1).

    (5) Initially (+)- and (-)-cyclopentanones (10) were prepared via the sulfoximine and/or enzymatic protocols introduced and developed by Johnson (Johnson, C.R. and T. Penning (1988) J. Am. Chem. Soc. 110:4726-4735; Johnson, C.R. (1998) Acc. Chem. Res. 31:333-341). Although effective on modest scale (10-100mg), the requirement for gram quantities of the oleocanthals demanded that we secure for more scalable routes to (10). Towards this end, we optimized a hybrid of synthetic approaches (Moon, H. et al. (2002) Tetrahedron: Asym. 13(11):1189-1193; Jin, Y. et al. (2003) J. Org. Chem. 68(23):9012-9018; Yang, M. (2004) J. Org. Chem. 69(11):3993-3996; Palmer, A. et al. (2001) Eur. J. Org. Chem. 66(7):1293-1308; Paquette, L. and S. Bailey (1995) J. Org. Chem. 60:7849-7856) as outlined in Scheme 2. Importantly, both enantiomers of (10) could be prepared in multi-gram quantities in 7 steps, with an overall efficiency of 40% from inexpensive D-(-)-ribose. Key elements of both sequences entailed vinyl Grignard addition to the enantiomers of aldehyde (12), followed in turn by ring closing metathesis (RCM), PCC oxidation and hydrogenation (Scheme 2).

  • Alkylation of (+)- and (-)- cyclopentanone (10) with methyl bromoacetate was then anticipated to proceed from the less hindered convex face of the bicyclic skeleton to install the side chain in a stereoselective fashion. Initial attempts however to alkylate (-)-(8) with methyl bromoacetate employing LDA in the presence of HMPA furnished only a complex mixture containing only trace amounts of (-)-(16). Neither addition of Cu(I) (Johnson, C.R. and T. Penning (1988) J. Am. Chem. Soc. 110:4726-4735) reportedly to suppress side reactions, nor the use of the corresponding tin enolate [generated by treatment of (-)-(10) in THF with LDA, followed by HMPA and tributyltin chloride (Suzuki, M. et al. (1985) J. Am. Chem. Soc. 107:3348; Nishiyama, H. et al. (1984) Tetrahedron Lett. 25:223)] improved the situation. Alkylation of the zinc enolate of (-)-(10) [generated by treatment of (-)-(10) in THF with 1.1 eq. LHMDS, followed in turn by HMPA (3.0 eq.) and dimethyl zinc (Morita, Y. et al. (1989) J. Org. Chem. 54:1787-1788) (1.0 eq.)] with methyl bromoacetate, however consistently furnished (-)-(16) in 55-60% yield as a single diastereomer (this reaction was fairly clean except some baseline materials. Using t-butyl bromoacetate instead of methyl bromoacetate did not improve the yield) (Scheme 3).

  • Wittig ethylnation of (-)-(16) was next achieved with ethyltriphenylphosphine bromide. Best results were obtained employing LDA as the base at -45°C. Although excellent stereoselectivity (ca., 10:1 E:Z) favoring the E-isomer (-)-(17) was achieved, the yield was only modest (42%), presumably due to the ease of enolization of (-)-(16) (Edmunds, M. “The Wittig Reaction” In MODERN CARBONYL OLEFINATION, Takeda, Ed., John Wiley & Sons, New Jersey, 2004). Interestingly, the stereoselectivity varied dramatically with reaction temperature. At 0°C, the E:Z selectivity was 3.3:1, while at room temperature the selectivity was 1.6:1. Assignment of the E geometry of the olefin was based on NMR NOE analysis (Scheme 4).

  • Hydrolysis of ester (-)-(17) (LiOH/THF/H2O) next afforded acid (-)-(18), which was subjected to Mitsunobu esterification (Mitsunobu, O. (1981) Synthesis 1-28) with 4-hydroxyphenethyl alcohol to furnish phenol (-)-(19) in 92% yield. As expected, the Mitsunobu reaction proceeded with complete chemoselectivety at the primary hydroxyl (Appendino, G. et al. (2002) Org. Lett. 4:3839-3841). Completion of the synthesis of (-)-oleocanthal (1) was then achieved via liberation of the vicinal diol moiety (4N HCl/acetonitrile), followed by oxidative cleavage (NaIO4); (-)-oleocanthal (1) was identical in all respects (e.g., 1H and 13C NMR, IR and HRMS) with an authentic sample isolated from virgin olive oil, the latter possessing spectral data identical to that reported in the literature (Montedoro, G. et al. (1993) J. Agric. Food Chem. 41:2228-2234). The structural assignment of (1) was also confirmed by COSY NMR analysis. Synthetic (-)-(1) displayed a small negative optical rotation ([α]25D -0.78, c = 0.9, CHCl3) identical to that obtained from a sample isolated from virgin olive oil ([α]25 D -0.9, c = 2.0, CHCl3). Thus the stereochemistry of (-)-oleocanthal (1) is 3S, 4E. The enantiomer of the natural product (+)-(1) was prepared via a similar reaction sequence beginning with (+)-(10) to furnish (+)-1 ([a]25 D +0.73, c = 0.55, CHCl3) (Scheme 5).

  • In summary, an effective, scalable synthesis of both enantiomers of oleocanthal (1) has been achieved, each in 13 steps (7 % overall yield) from inexpensive (D)-(-)-ribose, requiring only 6 chromatographic separations. The structural similarity of oleocanthal to a number of related natural products (Somanadhan, B. et al. (1998) Planta Medica 64:246-50; Takenaka, Y. et al. (2002) Chem. & Pharm. Bull. 50(3):384-389; Takenaka, Y. et al. (2002) Phytochemistry 59(7):779-787) suggests that the synthetic approach presented here should also be applicable to their construction.

 

  • Figure 3 shows the synthetic scheme of (-)-oleocanthal.

  • Figure 4 shows the synthetic scheme of (+)-oleocanthal.

Share

Synthesis of Methoxyisopropyl (MIP)-Protected (R)-Mandelonitrile and Derivatives in a Flow Reactor

 SYNTHESIS  Comments Off on Synthesis of Methoxyisopropyl (MIP)-Protected (R)-Mandelonitrile and Derivatives in a Flow Reactor
Jan 042015
 

 

 

 

Cyanohydrins are synthetically versatile chiral building blocks in organic synthesis. They can be conveniently synthesized in enantiomerically pure form via chemoenzymatic hydrogen cyanide addition onto the corresponding aldehyde using hydroxynitrile lyase.

Recently, we reported that such transformations can be efficiently carried out in a continuous flow manner using microreactors. Since racemization of enantiopure cyanohydrins occurs readily under slightly basic conditions, they should be protected before the follow-up reactions, preferably under acidic conditions.

In this contribution, we demonstrate that the methoxyisopropyl protection of mandelonitrile can be conveniently optimized in an automated microscale continuous flow system and subsequently scaled up under the same conditions by applying a larger flow reactor.

 

Synthesis of Methoxyisopropyl (MIP)-Protected (R)-Mandelonitrile and Derivatives in a Flow Reactor

http://www.akademiai.com/content/9488206462627n38/?p=6ed413d7b9fb47fe9fe7e1262c37694f&pi=2

Journal of Flow Chemistry
Publisher Akadémiai Kiadó
ISSN 2062-249X (Print)
2063-0212 (Online)
Subject Flow Chemistry
Issue Volume 2, Number 4/December 2012
Pages 124-128
DOI 10.1556/JFC-D-12-00008

Radboud University

Authors
Mariëlle M.E. Delville, Jasper J.F. Gool, Ivo M. Wijk, Jan C.M. Hest, Floris P.J.T. Rutjes1 Email for f.rutjes@science.ru.nl  f.rutjes@science.ru.nl

1Institute for Molecules and Materials Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen the Netherlands

Floris P.J.T. Rutjes

Groepsfoto IMM 2014 klein-1

 

The IMM-office is located on the 3rd floor of the Huygens building, which is at walking distance (about 5 min.) from the railway station Nijmegen Heyendaal.

 

 

Share
Jan 012015
 

IMAGE……….http://www.laboratorytalk.com/life-sciences-and-clinical-laboratory-equipment/synthesis-systems/flow-chemistry-system-aids-synthesis-of-cns-drugs/404882.article

 

 

1…………………

 

Gleevec, developed by Novartis, is a tyrosine kinase inhibitor used for the treatment of chronic myeloid leukaemia and gastrointestinal stromal tumours. The drug molecule represents a particularly challenging target for flow chemistry because of the low solubility of many of the reaction components required for its synthesis. The team devised a new synthesis route that prevents the equipment blockages from product precipitation and avoids many of the labour and time intensive practices of traditional batch-based preparation.

 

flow synthesisThe flow-based route required minimal manual intervention and was achieved despite poor solubility of many reaction componentsLINK………...http://www.rsc.org/chemistryworld/2013/01/flow-synthesis-anticancer-drug

2…………………..

Malaria is a serious global health issue. Artemisinin combination treatments are the first-line drugs, but supplies are limited because artemisinin is obtained solely by extraction from Artemisia annua. A continuous-flow process that converts dihydroartemisinic acid into artemisinin (see scheme) was shown to be an inexpensive and scalable process that can ensure a steady, affordable supply of artemisinin.

Continuous-Flow Synthesis of the Anti-Malaria Drug Artemisinin

  1. Dr. François Lévesque1 and
  2. Prof. Dr. Peter H. Seeberger1,2,*

Article first published online: 16 JAN 2012

DOI: 10.1002/anie.201107446………….http://onlinelibrary.wiley.com/doi/10.1002/anie.201107446/abstract

 

 

IMAGE………..http://phys.org/news/2013-08-chemists-fresh-approach-alloy-nanomaterials.html

 

 

 

3……………….

 

http://www.beilstein-journals.org/bjoc/single/articleFullText.htm?publicId=1860-5397-9-265

 

 

IMAGE……..http://www.chemistryviews.org/details/ezine/1058453/Women_in_ChemistryA_European_Journal.html

 

 

4…………………….

 

http://www.rsc.org/chemistryworld/2014/09/antimalarial-flow-synthesis-commercialisation-artemisinin

 

 

 

 

5…………………………….

http://pipeline.corante.com/archives/2014/04/

 

http://www.chemistryviews.org/details/ezine/5753931/Liliana_Mammino_Research_and_Education_in_Sub-Saharan_Africa.html

 

 

 

6…………………………

http://pubs.rsc.org/en/content/articlelanding/2013/ob/c2ob27003j#!divAbstract

 http://www.amnh.org/learn-teach/young-naturalist-awards/winning-essays2/2013-winning-essays/optimizing-algae-biofuels-applied-natural-selection-to-improve-lipid-synthesis

 

 

 

7…………………..

 

http://onlinelibrary.wiley.com/doi/10.1002/anie.201305429/abstract

http://www.rsc.org/chemistryworld/2012/04/iron-lady

 

 

8………………………..

http://www-medchem.ch.cam.ac.uk/hot_topics.php

http://www.ollusa.edu/s/1190/ollu.aspx?pgid=2674

 

 

 

9…………………………

http://www.mdpi.com/1420-3049/19/7/9736

http://www.ed.ac.uk/alumni/services/news/news/femalechemists

 

 

 

10…………………

 

http://newdrugapprovals.org/2014/12/31/continuous-flow-synthesis-of-alpha-halo-ketones-building-blocks-for-anti-retroviral-agents/

main image

 

http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/newssummary/news_26-9-2013-11-6-53

 

 

 

 

11……………………

 

http://pubs.rsc.org/en/content/articlehtml/2013/ob/c3ob41464g

 

http://emmittnlxe.soup.io/

 

 

 

 

12………………………..

http://pubs.rsc.org/en/content/articlelanding/2012/sc/c2sc21850j#!divAbstract

 

IMAGE……..http://evnewsreport.com/tag/battery/

 

 

 

 

13……………….

 

 

http://www.leygroup.ch.cam.ac.uk/research/continuous-flow-methodology/heterocycles-flow

IMAGE……….http://www.chemistryviews.org/details/ezine/1059875/Women_in_Chemistry__Interview_with_Zeinab_Shaaban_Abd_El-Ati_Abou_El-Naga.html

 

 

 

14………………..

 

http://www.sfu.ca/chemistry/groups/britton/publications.html

 

 

 

IMAGE……….http://www.greentechnolog.com/green_chemistry/

 

 

 

 

Share

RUFINAMIDE….FLOW SYNTHESIS

 SYNTHESIS  Comments Off on RUFINAMIDE….FLOW SYNTHESIS
Jan 012015
 

A report (Org Process Res Dev 2014, ASAP article) out of Jamison’s group at MIT, provides a 3-step synthesis of Rufinamide in 92% overall yield. The process illustrates a continuous and convergent method, moving away from the isolation of a key organic azide intermediates and a Cu coiled-tube reactor for the cycloaddition reaction to the corresponding desired triazole.

http://pubs.acs.org/doi/abs/10.1021/op500166n

Small molecules bearing 1,2,3-triazole functionalities are important intermediates and pharmaceuticals. Common methods to access the triazole moiety generally require the generation and isolation of organic azide intermediates. Continuous flow synthesis provides the opportunity to synthesize and consume the energetic organoazides, without accumulation thereof. In this report, we described a continuous synthesis of the antiseizure medication rufinamide. This route is convergent and features copper tubing reactor-catalyzed cycloaddition reaction. Each of the three chemical steps enjoys significant benefits and has several advantages by being conducted in flow. The total average residence time of the synthesis is approximately 11 min, and rufinamide is obtained in 92% overall yield.

 

 

 

 

 

Thumbnail image of graphical abstract

Give it a flow: A continuous-flow process for the synthesis of a 1,2,3-triazole precursor of Rufinamide has been developed. The protocol involves a solvent- and catalyst-free operation and utilizes reaction temperatures above the melting point of the target product to prevent microreactor clogging, resulting in a decrease of the operating time from hours to minutes.

Solvent- and Catalyst-Free Huisgen Cycloaddition to Rufinamide in Flow with a Greener, Less Expensive Dipolarophile

  1. Svetlana Borukhova1,
  2. Dr. Timothy Noël1,*,
  3. Bert Metten2,
  4. Eric de Vos2 and
  5. Prof. Dr. Volker Hessel1,*

Article first published online: 23 SEP 2013

DOI: 10.1002/cssc.201300684

http://onlinelibrary.wiley.com/doi/10.1002/cssc.201300684/abstract

 

 

 

Share
Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: